
NetXMS Administrator Guide
Release 5.2.0

Raden Solutions, SIA

Apr 28, 2025

CONTENTS

1 Introduction 1

2 Concepts 3

3 Installation 13

4 Upgrade 39

5 Quick start 45

6 Agent management 59

7 Server management 81

8 SNMP 89

9 User management 115

10 Object management 127

11 Network discovery 157

12 Data collection 161

13 Event processing 189

14 Data and Network visualisation 217

15 Grafana integration 257

16 Operating System Monitoring 261

17 File System Monitoring 273

18 Log monitoring 279

19 Windows Event Log Synchronization 291

20 SSH monitoring 295

21 Network Service Monitoring 299

22 Data Collection from Web Services 305

i

23 Modbus 309

24 Database monitoring 311

25 Application monitoring 331

26 ICMP ping 335

27 Hardware(sensor) monitoring 341

28 UPS monitoring 347

29 Cluster monitoring 349

30 JVM monitoring 351

31 Hypervisor monitoring 353

32 Asterisk monitoring 355

33 Network topology 361

34 Hardware Asset Management 365

35 Business services 369

36 Remote file management 375

37 Package management 379

38 Reporting 381

39 Image library 385

40 Mobile Client 387

41 Web API/Rest API 399

42 Advanced topics 423

43 Scheduled tasks 437

44 Scripting 441

45 High Availability Setup 447

46 Appendix 449

47 Glossary 561

Index 567

ii

CHAPTER

ONE

INTRODUCTION

This document covers the installation, configuration, and use of NetXMS.
NetXMS is an enterprise grade multi-platform modular open source network management and monitoring system. It
provides comprehensive event management, performance monitoring, alerting, reporting and graphing for all layers of
IT infrastructure — from network devices to the business application layer. Having been designed with flexibility and
scalability in mind, NetXMS features a wide range of supported platforms. It is licensed under the GNU General Public
License version 2 as published by the Free Software Foundation.

1.1 Product Support
Contact us if you run into a problem or found a bug.

• Forum
• Telegram
• Issue tracker
• Facebook
• Twitter

Priority support for NetXMS is provided by Raden Solutions

1.2 Conventions
The following typographical conventions are used in this manual.

Sample Description
Button Any GUI element: Button, Menu item
Another Guide Reference to external manual or man page
Control-M Keyboard shortcut
DCI Term which can be found in the glossary
File ‣ Exit Menu selection path. You must click on File, then Exit

1.2.1 Changelog
Complete change log for each product release is available at https://github.com/netxms/changelog/blob/master/
ChangeLog.

1

https://www.netxms.org/forum
https://telegram.me/netxms
https://dev.raden.solutions/projects/netxms/
https://www.facebook.com/netxms
https://twitter.com/netxms
http://www.radensolutions.com/
https://github.com/netxms/changelog/blob/master/ChangeLog
https://github.com/netxms/changelog/blob/master/ChangeLog

NetXMS Administrator Guide, Release 5.2.0

2 Chapter 1. Introduction

CHAPTER

TWO

CONCEPTS

2.1 Architecture overview
The system has three-tier architecture: the information is collected bymonitoring agents (either our own high-performance
agents or SNMP agents) and delivered to monitoring server for processing and storage. Network administrator can access
collected data using cross-platform Desktop Management Client, Web Management Client or Management application
for Android. Desktop and Web clients have almost the same functionality and the same user interface.

3

NetXMS Administrator Guide, Release 5.2.0

2.2 Objects
All monitored network infrastructure is represented as a set of objects in NetXMS monitoring system. Each object repre-
sents one physical or logical entity (e.g. host or network interface), or group of them (e.g. subnet, container). Objects are
organized into hierarchical structure. An object can have several parents, e.g. a node can belong to multiple containers,
subnets and templates. Structure can be modified either manually or automatically with the help of Auto-bind scripts.
Each object has it’s own access rights. Access rights are applied hierarchically on all children of object. For example if
Read access right is granted to a user on a Container, then user has Read right on all objects that this Container contains.
Every object has set of attributes; some of them exist for all objects (like id and name or status), while other depend on
object class - for example, only Node objects have attribute SNMP community string. In addition to the above mentioned
attributes, it’s possible to define custom attributes. This can be done by user in the Management Client, from NXSL script
or by external application via NetXMS API.
NetXMS has seven top level objects - Entire Network, Service Root (named “Infrastructure Services” after system
installation), Template Root, Asset Root, Network Map Root, Dashboard Root and Business Service

Root. These objects serve as an abstract root for an appropriate object tree. All top level objects have only one editable
attribute - name.

Object Class Description Valid Child Objects
Entire Network Abstract object representing root of IP topology tree. All

zone are located under it. System can have only one object
of this class.

• Zone

Zone Object representing group of (usually interconnected) IP
networks without overlapping addresses. Contains appro-
priate subnet objects.

• Subnet

Subnet Object representing IP subnet. Typically objects of this
class are created automatically by the system to reflect sys-
tem’s knowledge of IP topology. The system places Node
objects inside an appropriate Subnet object based on an
interface configuration. Subnet objects have only one ed-
itable attribute - Name.

• Node

Service Root Abstract object representing root of your infrastructure
service tree. System can have only one object of this class.
After system installation it is named “Infrastructure Ser-
vices”.

• Circuit
• Chassis
• Cluster
• Condition
• Collector
• Container
• Mobile Device
• Node
• Rack
• Sensor
• Wireless Domain

continues on next page

4 Chapter 2. Concepts

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Object Class Description Valid Child Objects
Collector Object similar to container, but with data collection ca-

pabilities. • Circuit
• Cluster
• Chassis
• Condition
• Collector
• Container
• Mobile Device
• Node
• Rack
• Sensor
• Wireless Domain

Container Grouping object which can contain any type of objects
that Service Root can contain. With help of container ob-
jects you can build object’s tree which represents logical
hierarchy of IT services in your organization.

• Circuit
• Cluster
• Chassis
• Condition
• Collector
• Container
• Mobile Device
• Node
• Rack
• Sensor
• Wireless Domain

Cluster Pseudo-object defining any process: technological or log-
ical that aggregates information from several separate
nodes. See Cluster monitoring for more information.

• Node

Circuit Reference of multiple interfaces will allow to use this ob-
ject to represent different types of network services be-
yond -multilink interfaces, links between sites, virtual cir-
cuits, etc.

• Interface

Rack Object representing a rack. It has the same purpose as
container, but allows to configure visual representation of
equipment installed in a rack.

• Node
• Chassis

Chassis Object representing a chassis, e.g. a blade server enclo-
sure. Chassis can be configured as a part of a rack. • Node

Condition Object representing complicated condition - like “cpu on
node1 is overloaded and node2 is down for more than 10
minutes”. Conditions may represent more complicated
status checks because each condition can have a script at-
tached. Interval for evaluation of condition status is con-
figured in Server Configuration Variables as Condition-
PollingInterval with default value 60 seconds.

continues on next page

2.2. Objects 5

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Object Class Description Valid Child Objects
Node Object representing physical host or network device (such

as a router or network switch). These objects can be cre-
ated either manually by administrator or automatically
during network discovery process. They have a lot of
attributes controlling all aspects of interaction between
NetXMS server and managed node. For example, the at-
tributes specify what data must be collected, how node
status must be checked, which protocol versions to use,
etc. Node objects contain one or more interface objects.
The system creates interface objects automatically during
configuration polls.

• Interface
• Network Service
• VPN Connector

Interface Interface objects represent network interfaces of man-
aged computers and devices. These objects created auto-
matically by the system during configuration polls or can
be created manually by user.

Network Service Object representing network service running on a node
(like http or ssh), which is accessible online (via TCP
IP). Network Service objects are always created manu-
ally. Currently, the system works with the following pro-
tocols - HTTP, POP3, SMTP, Telnet, SSH and Custom
protocol type.

VPN Connector Object representing VPN tunnel endpoint, is used for in-
terfaceless tunnels (like ipsec). Such objects can be cre-
ated to add VPN tunnels to network topology known to
NetXMS server. VPN Connector objects are created
manually. In case if there is a VPN connection linking
two different networks open between two firewalls that
are added to the system as objects, a user can create a
VPN Connector object on each of the firewall objects and
link one to another. The network topology will now show
that those two networks are connected and the system will
take this condition into account during problem analysis
and event correlation.

Sensor Logical object with data collection capabilities. NetXMS
does not perform direct network communication with
sensor, but data is collected by some other means, e.g.
using MQTT protocol.

Wireless Domain Object representing wireless network, made up from one
or several wireless controllers (represented by nodes with
Wireless Controller capability) and thin access points.

• Access point
• Node

Access point Object representing thin wireless access point managed
by a central controller. These objects are created auto-
matically by the system.

Template Root Abstract object representing root of your template tree. • Template
• Template Group

Template Group Grouping object which can contain templates or other
template groups. • Template

• Template Group

continues on next page

6 Chapter 2. Concepts

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Object Class Description Valid Child Objects
Template Data collection and agent policy template. See Data col-

lection section for more information about templates. If
an object is a child of a template, this means that teplate
is applied to that object.

• Acces point
• Collector
• Cluster
• Mobile Device
• Node
• Sensor

Asset Root Abstract object representing root of hardware asset man-
agement tree. • Asset

• Asset group

Asset Group Grouping object which can contain assets or other asset
group. • Asset

• Asset group

Asset Hardware management asset
Network Map Root Abstract object representing root of your network map

tree. • Network Map
• Network Map Group

Network Map Group Grouping object which can contain networkmaps or other
network map groups groups. • Network Map

• Network Map Group

Network Map Network map.
Dashboard Root Abstract object representing root of your dashboard tree. • Dashboard

• Dashboard Group

Dashboard Group Grouping object which can contain dashboards or other
dashboard group • Dashboard

• Dashboard Group

Dashboard Dashboard. Can contain other dashboards. • Dashboard

Business Service
Root

Abstract object representing root of your business service
tree. System can have only one object of this class. • Business Service

• Business Service Proto-
type

Business Service Object representing single business service. Can contain
other business services or business service prototypes. • Business Service

• Business Service Proto-
type

Business Service
Prototype

Prototype from which business service objects are auto-
matically populated.

2.2. Objects 7

NetXMS Administrator Guide, Release 5.2.0

2.2.1 Object status
Each object has a status. Status of an object calculated based on:

• Polling results
• Status of child objects (e.g. interfaces of node, nodes under container)
• Active alarms, associated with the object (after an alarm is resolved or terminated, it no longer affects object status)
• Value of status DCIs (DCI that has Use this DCI for node status calculation property enabled)

There are multiple options for status calculation, see Status calculation for more information.
For some object classes, like Report or Template, status is irrelevant. Status for such objects is always Normal. Object’s
status can be one of the following:

Nr. Status Description

0 Normal Object is in normal state.

1 Warning Warning(s) exist for the object.

2 Minor Minor problem(s) exist for the object.

3 Major Major problem(s) exist for the object.

4 Critical Critical problem(s) exist for the object.

5 Unknown Object’s status is unknown to the management server.

6 Unmanaged Object is set to “unmanaged” state.

7 Disabled Object is administratively disabled (only applicable to interface objects).

8 Testing Object is in testing state (only applicable to interface objects).

2.2.2 Unmanaged status
Objects can be unmanaged. In this status object is not polled, DCIs are not collected, no data is updated about object.
This status can be used to store data about an object that is temporary or permanently unavailable or not managed.

2.2.3 Maintenance mode
This is special status, that’s why it is not included in above status list. This status prevents event processing for specific
node. While this node in maintenance mode is still polled and DCI data is still collected, but no event is generated.

2.3 Event Processing
NetXMS is event based monitoring system. Events can come from different sources (polling processes (status, configu-
ration, discovery, and data collection), SNMP traps, and directly from external applications via client library). All events
all are forwarded to NetXMS Event Queue.
NetXMS Event Processor can process events from Event Queue in either sequential or parallel mode. In sequential
mode events are processed one-by-one. Parallel processing mode allows to process events in several parallel threads, thus
increasing processing performance. See Event processing for more information.
Events in the Event Queue are processed according to rules defined in Event Processing Policy. As a result of event
processing, preconfigured actions can be executed, and/or event can be shown up as alarm.

8 Chapter 2. Concepts

NetXMS Administrator Guide, Release 5.2.0

Usually alarm represents something that needs attention of network administrators or network control center operators,
for example low free disk space on a server. NetXMS provides one centralized location, the Alarm Browser, where alarms
are visible. It can be configured which events should be considered important enough to show up as alarm.

Fig. 1: Event flow inside the monitoring system

2.4 Polling
For some type of objects NetXMS server start gathering status and configuration information as soon as they are added
to the system. These object types are: nodes, access points, conditions, clusters, business services, zones (if a zone has
more then one proxy, proxy health check is being performed). This process called polling. There are multiple polling
types, each having specific execution intervals (set by server configuration variables). In the end of polling process hook
script is being executed.

2.4. Polling 9

NetXMS Administrator Guide, Release 5.2.0

Type Purpose Interval server configuration variable Hook script
Status Determine current status of

an object
Objects.StatusPollingInterval Hook::StatusPoll

Configuration Determine current con-
figuration of an object
(list of interfaces, sup-
ported protocols, etc.)
By default executes auto
bind scripts for templates
and containers, use “Ob-
jects.AutobindOnConfigurationPoll”
server configuration vari-
able to disable.

Objects.ConfigurationPollingInterval Hook::ConfigurationPoll

Configuration
(full)

Same as usual configura-
tion poll but resets pre-
viously detected capabili-
ties and detects them again.
(can only be executed man-
ually)

Interface Updates names of the in-
terfaces. This operation
also happens during Con-
figuration Poll. (can only
be executed manually)

Topology Gather information related
to network link layer topol-
ogy

Topology.PollingInterval Hook::TopologyPoll

Routing Gather information about
IP routing (cannot be exe-
cuted manually)

Topology.RoutingTableUpdateInterval

ICMP Ping nodes and gather re-
sponse time statistics (can-
not be executed manually)

ICMP.PollingInterval

Instance Dis-
covery

Perform Instance Discov-
ery to add/remove DCIs

DataCollection.InstancePollingInterval Hook::InstancePoll

Automatic
Binding

Checks and bind or unbind
Containers, Templates
and Context Dashboards
to nodes according to
auto-bind script.

Objects.AutobindPollingInterval

Network Dis-
covery

Searches for new nodes by
polling information about
neighbor IP addresses from
known nodes. Acces-
sible from Configuration
perspective.

NetworkDiscov-
ery.PassiveDiscovery.Interval

Hook::DiscoveryPoll

Polling intervals can be set for specific objects by adding a custom attribute named SysConfig:nnn, where nnn is the
name of server configuration variable e.g.: SysConfig:Objects.ConfigurationPollingInterval.

10 Chapter 2. Concepts

NetXMS Administrator Guide, Release 5.2.0

2.5 Data Collection
From each node NetXMS can collect one or more metrics which can be either single-value (e.g. “CPU.Usage”), list
(e.g. “FileSystem.MountPoints”) or table (e.g. “FileSystem.Volumes”). When new data sample is collected, it’s value is
checked against configured thresholds. This documentation use termData Collection Item (DCI) to describe configuration
of metric collection schedule, retention, and thresholds.
Metrics can be collected from multiple data sources:

Source Description
Internal Data generated inside NetXMS server process (server statistics, etc.)
NetXMS Agent Data is collected from NetXMS agent, which should be installed on target node.

Server collect data from agent based on schedule.
SNMP SNMP transport will be used. Server collect data based on schedule.
Web service Data is objained from JSON, XML, or plain text retrieved via HTTP
Push Values are pushed by external system (using nxpush or API) or from NXSL script.
Windows Performance counters Data is collected via NetXMS agent running on Windows machine.
SM-CLP Data is collected via Server Management Command Line Protocol
Script Value is generated by NXSL script. Script should be stored in Script Library.
SSH Data is obtained from output of ssh command executed through SSH connection.
MQTT Data is obtained by subcribing to MQTT broker topics.
Network Device Driver Some SNMP drivers (NET-SNMP, RITTAL as of NetXMS v. 3.8) provide pa-

rameters for data collection. E.g. NET-SNMP provides information about storage
this way.

Modbus Data is collected via Modbus-TCP industrial protocol. See Modbus for more in-
formation.

EtherNet/IP

2.6 Discovery
2.6.1 Network discovery
NetXMS can detect new devices and servers on the network and automatically create node objects for them. Two modes
are available - passive and active.
In passive mode server will use only non-intrusive methods by querying ARP and routing tables from known nodes. Tables
from the server running NetXMS are used as seed for passive discovery.
In active mode in addition to passive scan methods configured address ranges are periodically scanned using ICMP echo
requests.
NetXMS can also use SNMP trap and syslog messages as seed for discovery. Network discovery is availabale from
Configuration perspective.

2.6.2 Instance discovery
NetXMS can create metrics names for Data Collection Item automatically. Instance discovery collects information about
node instances like disk mountpoints, device list, etc. and automatically creates or removes DCIs with obtained data. To
run instance discovery manually and check it’s results select in nodes menu Poll –> Instance discovery

2.5. Data Collection 11

NetXMS Administrator Guide, Release 5.2.0

2.7 Security
All communications are encrypted using either AES-256, AES-128, or Blowfish and authenticated. As additional security
measure, administrator can restrict list of allowed ciphers.
Agent authenticate incoming connections using IP white list and optional preshared key.
User passwords (if internal database is used) as hashed with salt with SHA-256.
All shared secrets and passwords stored in the system can be obfuscated to prevent snooping.

12 Chapter 2. Concepts

CHAPTER

THREE

INSTALLATION

3.1 Major changes between releases
3.1.1 5.1.4
IP v4 addresses are now supported only in a.b.c.d format with decimal numbers

3.1.2 5.1
NXSL changes: node attribute ‘ipAddr’ is deprecated. The newly added ‘ipAddress’ attribute should be used instead.

3.1.3 5.0
Aditionally loaded MIB files will not work. They should be uploaded again in the Configuration –> SNMP MIB files
configuration view. Starting with version 5.0, the MIB compilation file extension changed to “.mib” and the already
compiled MIB file extension is now “.cmib”. The default MIB file location has changed to $HOME/share/netxms/mibs/
and user additional MIB files should be loaded in Configuration –> SNMP MIB files.
The default format of SNMP OID changes to a format without leading dot. Potentially this can break some scripts that
use SNMP OID string comparisons.
The NXSL syntax has changed. During upgrade, existing scripts get converted automatically . If you need to manually
convert a script, this could be done via the nxscript command line utility (nxscript -5 script-file.nxsl). NXSL
syntax major changes:

Description Old example New example
String concatenation changes from ‘.’ to ‘..’ variable = “Text first

part “ . “text second
part”;

variable = “Text first
part “ .. “text second
part”;

Dereference changed form ‘->’ to ‘.’ equals = $node-
>getInterface($5)
== variable-
>interfaceAttribute;

equals =
$node.getInterface($5)
== vari-
able.interfaceAttribute;

Use ‘[]’ to initialize an array instead of ‘%()’ a = %(1,2,3); a = [1,2,3];
Use safe dereference ‘?.’ instead of ‘@’ customAttribute-

Value = test@$node;
customAttribute-
Value = $node?.test;

Use ‘import’ keyword instead of ‘use’ for library import use ToolBox; import ToolBox;
Use ‘function’ keyword instead of ‘sub’ for function definition sub EnumerateN-

odes(obj, level)
function Enumer-
ateNodes(obj, level)

Class ‘TIME’ is now renamed as ‘DateTime’. Created Math, Base64, Crypto, Net, and IO modules, and functions moved

13

mailto:test@\protect \TU\textdollar node

NetXMS Administrator Guide, Release 5.2.0

under them. The most used functions are left as deprecated, but others were just renamed. The table below shows the
full renamed list containing functions that were just renamed and do not have deprecated versions:

Old name New name Type
TIME DateTime class
asin Math::Asin function
acos Math::Acos function
atan Math::Atan function
atan2 Math::Atan2 function
cosh Math::Cosh function
exp Math::Exp function
gethostbyaddr Net::ResolveAddress function
gethostbyname Net::ResolveHostname function
log Math::Log function
log10 Math::Log10 function
md5 Crypto::MD5 function
md5 Crypto::MD5 function
sha1 Crypto::SHA1 function
sha256 Crypto::SHA256 function
sinh Math::Sinh function
tanh Math::Tanh function
weierstrass Math::Weierstrass function
decode Base64::Decode function
encode Base64::Encode function
CopyFile IO::CopyFile function
CreateDirectory IO::CreateDirectory function
DeleteFile IO::DeleteFile function
FileAccess IO::FileAccess function
OpenFile IO::OpenFile function
RemoveDirectory IO::RemoveDirectory function
RenameFile IO::RenameFile function

Abort and other runtime errors in the script DCI will set DCI to an error state. Before version 5.0, DCI changed state to
unsupported.
Importing the dashboard configuration exported from the previous version of NetXMS will not upgrade the script syntax
to the 5.0 format.

3.1.4 4.4
The minimal JRE (Java Runtime Environment) version for both web and management client is now Java 17.

3.1.5 4.2
The NXSL functions ‘AgentExecuteAction’ and ‘AgentExecuteActionWithOutput’ are renamed to ‘AgentExecuteCom-
mand’ and ‘AgentExecuteCommandWithOutput’.

3.1.6 4.1
The CreateDCI NXSLmethod changed. In the new version the last two parameters “polling interval” and “retention time”
should be set to null instead of 0 to have a default value in the DCI configuration.
NXSL decimal numbers written with leading zeros will NOT be interpreted as octal.

14 Chapter 3. Installation

NetXMS Administrator Guide, Release 5.2.0

3.1.7 4.0
Incompatible attributes in NXSLDCI class: instance now refers to an instance value (as in {instance} macro), not instance
name as before. The instance name can be accessed via the attribute “instanceName”.
Several WEB API endpoints were renamed, e.g. API_HOME/summaryTable/adHoc became API_HOME/summary-
table/ad-hoc.

3.1.8 3.8
The minimal JRE (Java Runtime Environment) version for the management client is Java 11. A Desktop Management
Client with bundled JRE is provided for Windows.

3.1.9 3.7
Introduced boolean type in NXSL. Comparisons like “func() == 1”, where ‘func’ is a function that returns a boolean type,
will always result as false as the boolean value ‘true’ is not equal to 1. This might require fixes in some NXSL scripts.
Regexp matching operation in NXSL returns an array with capture groups or false as a result.
Clusters now have configuration poll. If you have a configuration poll hook script that is referring to the $node object,
this will produce an error message in the server log each time a configuration poll runs on a cluster. Replace $node with
$object or use the condition if (classof($object) == "Node") or if ($node != null) prior to accessing
attributes or methods of $node.

3.1.10 3.6
In this version the “Certificate manager” was removed from server. All CA certificates configuration should be manually
moved to the “TrustedCertificate” configuration parameter in the server configuration file.

3.1.11 3.5
External Metrics (ExternalMetric, etc…) expect UTF-8 encoding onWindows. It might be needed to adjust scripts called
by external metrics if non-ASCII characters are returned.

3.1.12 3.1
Regexp matching operation in NXSL returns array with capture groups or NULL as result. NXSL objects and arrays in
logical expressions are evaluated to TRUE. This might require some NXSL script adjustments.

3.1.13 3.0
Notification channels are introduced as new functionality. SMS configuration automatically moved from server configu-
ration to notification channel depending on old driver with one of the next names: AnySMS, DBTable, Dummy, GSM,
Kannel, MyMobile, Nexmo, NXAgent, Portech, Slack, SMSEagle, Text2Reach, WebSMS. No manual actions are re-
quired.
Flags and dynamic flags are moved to the NetObject class. Separated node flags set by user and capability flags set by
system to flags and capabilities. Numeric values for flags, capabilities and dynamic flags were changed. This affects only
NXSL scripts that checked those flags directly.
The 32 bit version of management client is not available any more.
The Agent always requires encryption unless the RequireEncryption parameter explicitly set to off. It might be required
to manually add the “RequireEncryption” configuration parameter where required to disable encryption.
Agent policies were merged with templates. Each policy was converted to a template. No changes required.

3.1. Major changes between releases 15

NetXMS Administrator Guide, Release 5.2.0

3.2 Planning
3.2.1 Operating system
Both NetXMS server and agent work fine on most operating systems, including Windows, Linux, and commercial
UNIXes. However, we test and officially support only some of them.
Supported platforms for NetXMS server and agent:

• Debian 10 (Buster), 11 (Bullseye), 12 (Bookworm)
• Ubuntu 18.04 LTS (Bionic), 20.04 LTS (Focal Fossa), 22.04 LTS (Jammy Jellyfish), 24.04 (Noble)
• Linux Mint 19.3 (Tricia), 20.3 (Una), 21.2 (Victoria)
• Linux Mint Debian Edition 4
• Devuan ASCII
• Red Hat Enterprise Linux 8, 9
• CentOS 8
• Windows 11, Windows 10, Windows Server 2016, 2019, 2022
• FreeBSD 12
• ArchLinux (Latest)
• AlpineLinux 3.8+
• Raspbian Buster

Support for the following platforms is provided only to customers with an active support contract:
• Debian 8 (Jessie)
• Ubuntu 16.04 LTS (Xenial)
• Devuan Jessie
• Red Hat Enterprise Linux 6, 7
• CentOS 6, CentOS 7
• FreeBSD 11, FreeBSD 11.3
• Windows 7, Windows 8.1, Windows Server 2008 R2, 2012, 2012 R2
• AIX 6.1, AIX 7.x
• SUSE Linux Enterprise Server 11, 12, 15
• Solaris 11 (agent only)
• HP-UX 11.31 (agent only)

3.2.2 Server hardware
Minimal requirements: Core 2 duo 1GHz, 1024MB RAM, 1GB disk space.

3.2.3 Linux kernel tuning
An important requirement on large systems might be the need to tune Linux network buffer size. Default values may not
be enough if the system is sending many ICMP pings, for example. The following kernel parameters should be changed:

• net.core.rmem_default

16 Chapter 3. Installation

NetXMS Administrator Guide, Release 5.2.0

• net.core.wmem_default
• net.core.rmem_max
• net.core.wmem_max

In our test lab, value 1703936 seems to be working well (default was 212992).
Example:

• sudo sysctl -w net.core.rmem_default=1703936
• sudo sysctl -w net.core.wmem_default=1703936
• sudo sysctl -w net.core.rmem_max=1703936
• sudo sysctl -w net.core.wmem_max=1703936

Kernel changes will not be preserved after reboot unless sysctl commands are applied in the system configuration file,
which is typically located at /etc/sysctl.conf. Increasing these kernel values also increases kernel memory space in use
and may impact other applications.

3.2.4 Database
Database engines supported by NetXMS server:

• PostgreSQL 9.5, 9.6, 10, 11, 12, 13, 14, 15, 16, 17
• PostgreSQL with TimescaleDB 11, 12, 13, 14, 15, 16, 17
• MySQL 5.6, 5.7, 8.0
• MariaDB 10.1, 10.2, 10.3, 10.4
• Oracle 12c, 18c, 19c
• Microsoft SQL Server 2012, 2014, 2016, 2017, 2022
• SQLite (only for test purposes)

PostgreSQL database tuning might be required depending on database size. Increasing shared_buffers might be
needed. A rough recommendation is 25% of available RAM. Increasing max_locks_per_transaction is needed if
using TimescaleDB. A rough recommendation is 512.
Database size and load is very hard to predict, because it is depending on the number of monitored nodes and collected
metrics. If you plan to install a database engine on the same machine as NetXMS server, increase your hardware require-
ments accordingly.

3.2.5 Java
A Java Runtime Environment (JRE) is needed for the Desktop Management Client (nxmc) and for the Web Management
Client. The Supported Java version is 17 and higher.
Since version 3.8 the Desktop Management Client with a bundled JRE is provided for Windows.

3.2.6 Agent
Agent resource usage is negligible and can be ignored.

3.2. Planning 17

NetXMS Administrator Guide, Release 5.2.0

3.3 Installing from DEB repository
We host a public APT repository at http://packages.netxms.org/ for most deb-based distributions (Debian, Ubuntu, Mint,
Raspbian, etc.). Packages are signed, and you’ll need to install an additional encryption key for signature verification.
Supported URLs (CODENAME should be replaced with output of lsb_release -sc):

• Debian, LMDE - “deb http://packages.netxms.org/debian CODENAME main”
• Ubuntu, Mint - “deb http://packages.netxms.org/ubuntu CODENAME main”
• Raspbian - “deb http://packages.netxms.org/raspbian CODENAME main”

3.3.1 Add APT repository
There are two options to add an APT repository: by hand or by using the netxms-release package. Use of the release
package is strongly encouraged because it allows easy change in repository configuration and encryption keys will be
updated in the future.

Using the netxms-release package
Download and install the netxms-release-latest.deb package, which contain a source list file of the repository as well as a
signing key.

wget http://packages.netxms.org/netxms-release-latest.deb

sudo dpkg -i netxms-release-latest.deb

sudo apt-get update

Manually
Add the repository to your sources.list:

echo "deb http://packages.netxms.org/$(lsb_release -si | tr A-Z a-z) $(lsb_release -

↪→sc | tr A-Z a-z) main" > /etc/apt/sources.list.d/netxms.list

wget -q -O - https://packages.netxms.org/netxms-keyring.gpg | gpg --dearmor -o /etc/

↪→apt/trusted.gpg.d/netxms-keyring.gpg

sudo apt-get update

3.3.2 Installing packages
Server
The server requires two components to function: the server itself (package “netxms-server”) and at least one database
abstraction layer driver (multiple can be installed at the same time, e.g. for migration purposes). These database drivers
are also used by the agent for database monitoring (performing queries to databases).
Provided driver packages:

• netxms-dbdrv-pgsql - PostgreSQL driver
• netxms-dbdrv-mariadb - Mariadb driver
• netxms-dbdrv-mysql - MySQL driver (not built for Ubuntu 20 / Mint 20)
• netxms-dbdrv-odbc - unixODBC driver (can be used with DB/2 and Microsoft SQL)
• netxms-dbdrv-oracle - Oracle driver (requires Oracle client installation)
1. Install required packages (adjust command to match your environment):

18 Chapter 3. Installation

http://packages.netxms.org/
http://packages.netxms.org/debian
http://packages.netxms.org/ubuntu
http://packages.netxms.org/raspbian

NetXMS Administrator Guide, Release 5.2.0

apt-get install netxms-server netxms-dbdrv-pgsql

2. Create user and database (examples).
3. Modify server configuration file (“/etc/netxmsd.conf” to match your environment.
4. Load database schema and default configuration:

nxdbmgr init

5. Start server:

systemctl start netxms-server

6. Enable automatic startup of server:

systemctl enable netxms-server

7. If the database engine is running on the same system, add ordering dependency for database in the netxmsd sys-
temd unit override file. This will ensure database shutdown only after netxmsd process completion on system
shutdown/restart. To add the dependency e.g. for the PostgreSQL database, run:

systemctl edit netxms-server

and add the following lines:

[Unit]

After=network.target postgresql.service

After editing run systemctl daemon-reload to reload systemd configuration.

Note

Default credentials - user “admin” with password “netxms”.

Agent
Install the core agent package (“netxms-agent”) and optional subagent packages, if required:

apt-get install netxms-agent

Start agent

systemctl start netxms-agent

Enable automatic startup of agent

systemctl enable netxms-agent

Management Client
Desktop Management Client

Due to a limitation of the Eclipse platform used to build the Management Client, only a x64 build is provided.
1. Make sure you have 64-bit Java version 17 installed you your system.

3.3. Installing from DEB repository 19

NetXMS Administrator Guide, Release 5.2.0

2. Download the latest .jar file from http://www.netxms.org/download/, for example nxmc-5.1.0-standalone.jar.
3. Run the .jar file using java, for example java -jar nxmc-xxx.jar .

The desktop management client produces a log file named .nxmc/data/.metadata/.log in the home folder of the
currently logged in user. Inspect this log file if you encounter errors when running the client.

Web Management Client

The NetXMS web interface is java based and should be deployed into a servlet container to run. Minimal supported
versions are: Jetty 10, Tomcat 9. The supported Java version is 17 or later.

1. Install one of the servlet containers that support servlet-api version 4.
2. Download the latest version of WAR file from the Web Interface Binaries section https://www.netxms.org/

download/ named nxmc-VERSION.war, for example nxmc-5.1.0.war.
3. Copy nxmc.war to the webapps directory. In a few seconds it will be autodeployed and available at http://SERVER_

IP:SERVER_PORT/nxmc/
Tomcat default folder: /var/lib/tomcat9/webapps
Jetty default folder: $JETTY_HOME/webapps/

The web management client produces a log file. For Tomcat it is located at /var/lib/tomcat9/work/Catalina/
localhost/nxmc/eclipse/workspace/.metadata/.log. Inspect this log file if you encounter errors when run-
ning the web client.

3.4 Installing from RPM repository
We provide RPM packages for RHEL and Fedora, both amd64 and aarch64. If you need a build for another system,
please contact us for support or check this section: Installing from source.
The RHEL repository is at https://packages.netxms.org/epel/.
The Fedora repository is at https://packages.netxms.org/fedora/.
A complete repository file and signing key is available in each corresponding root.

3.4.1 Add repository
DNF provides a simple way to add a repository. Please note that you may need to install the EPEL repository first. See
details):

RHEL and compatible

dnf config-manager --add-repo https://packages.netxms.org/epel/netxms.repo

Fedora

dnf config-manager --add-repo https://packages.netxms.org/fedora/netxms.repo

Once added, you can install any package with dnf install (e.g. dnf install netxms-agent).

3.4.2 Installing packages
Server
The server requires two components to function - the server itself (package “netxms-server”) and at least one database
abstraction layer driver (multiple can be installed at the same time, e.g. for migration purposes). These database drivers
are also used by the agent for database monitoring (performing queries to databases).
Provided driver packages:

20 Chapter 3. Installation

http://www.netxms.org/download/
https://www.netxms.org/download/
https://www.netxms.org/download/
http://SERVER_IP:SERVER_PORT/nxmc/
http://SERVER_IP:SERVER_PORT/nxmc/
https://packages.netxms.org/epel/
https://packages.netxms.org/fedora/
https://docs.fedoraproject.org/en-US/epel/
https://docs.fedoraproject.org/en-US/epel/

NetXMS Administrator Guide, Release 5.2.0

• netxms-dbdrv-pgsql - PostgreSQL driver
• netxms-dbdrv-mariadb - Mariadb driver
• netxms-dbdrv-mysql - MySQL driver, currently under development (not built for Ubuntu 20 / Mint 20)
• netxms-dbdrv-odbc - unixODBC driver (can be used with DB/2 and Microsoft SQL)
• netxms-dbdrv-oracle - Oracle driver (requires Oracle client installation)
1. Instal required packages (adjust command to match your environment):

dnf install netxms-server netxms-dbdrv-pgsql

2. Create user and database (examples).
3. Modify the server configuration file (“/etc/netxmsd.conf” to match your environment.
4. Load database schema and default configuration:

nxdbmgr init

5. Start server:

systemctl start netxms-server.service

6. Enable automatic startup of server:

systemctl enable netxms-server.service

7. If the database engine is running on the same system, add ordering dependency for database into netxmsd sys-
temd unit override file. This will ensure database shutdown only after netxmsd process completion on system
shutdown/restart. To add the dependency e.g. for the PostgreSQL database, run:

systemctl edit netxmsd

and add the following lines:

[Unit]

After=network.target postgresql.service

After editing, run systemctl daemon-reload to reload systemd configuration.

Note

Default credentials - user “admin” with password “netxms”.

Agent
Install the core agent package (“netxms-agent”) and optional subagent packages, if required:

dnf install netxms-agent

Start agent

systemctl start netxms-agent

Enable automatic startup of agent

3.4. Installing from RPM repository 21

NetXMS Administrator Guide, Release 5.2.0

systemctl enable netxms-agent

Management Client
Desktop Management Client

Due to a limitation of the Eclipse platform used to build the Management Client, only a x64 build is provided.
1. Make sure you have 64-bit Java version 17 installed you your system.
2. Download the latest .jar file from https://www.netxms.org/download/, for example nxmc-5.1.0-standalone.jar.
3. Run the .jar file using java, for example java -jar nxmc-xxx.jar .

The desktop management client produces a log file named .nxmc/data/.metadata/.log in the home folder of the
currently logged in user. Inspect this log file if you encounter errors when running the client.

Web Management Client

The NetXMS web interface is java based and should be deployed into a servlet container to run. Minimal supported
versions are: Jetty 10, Tomcat 9. The supported Java version is 17, but is found to be working with later versions, for
example 21.

1. Install one of the servlet containers that support servlet-api version 4.
2. Download the latest version of WAR file from Web Interface Binaries section https://www.netxms.org/download/

named nxmc-VERSION.war, for example nxmc-5.0.6.war.
3. Copy nxmc.war to the webapps directory. In a few seconds it will be autodeployed and available at http://SERVER_

IP:SERVER_PORT/nxmc/
Tomcat default folder: /var/lib/tomcat9/webapps
Jetty default folder: $JETTY_HOME/webapps/

The web management client produces a log file. For Tomcat it is located at /var/lib/tomcat9/work/Catalina/
localhost/nxmc/eclipse/workspace/.metadata/.log. Inspect this log file if you encounter errors when run-
ning the web client.

3.5 Installing on Windows
3.5.1 Server

1. Download the latest version from http://www.netxms.org/download/. You will need Windows the in-
staller named netxms-VERSION-x64.exe, e.g. netxms-server-5.0.8-x64.exe. Please note that in the
following steps VERSION will be used as a substitution for an actual version number.

2. Run the installer package on your server. The installation wizard will be displayed. Follow the prompts
until the Select Components window opens.

3. On the Select Components window, select the NetXMS Server option and an appropriate database
client library. You do not have to install a database client library from NetXMS package if it is already
installed on the machine (however, it might be required to add the folder where the client library is
installed to system path).

22 Chapter 3. Installation

https://www.netxms.org/download/
https://www.netxms.org/download/
http://SERVER_IP:SERVER_PORT/nxmc/
http://SERVER_IP:SERVER_PORT/nxmc/
http://www.netxms.org/download/

NetXMS Administrator Guide, Release 5.2.0

4. For a typical installation, keep default settings in the Select Additional Tasks window. Set hardened
file system permissions makes the installation folder accessible only to members of the Administrators
group and the SYSTEM user.

3.5. Installing on Windows 23

NetXMS Administrator Guide, Release 5.2.0

5. The Database selection window will open:

• Select the desired database type. Enter the name of database server.
• In the DBA login name and DBA password fields, enter the database administrator login name and
password. You have to fill these fields only if you have chosen the Create database and database user
before initialization option.

• Enter the desired database name, database user name and password.
Note for MySQL:
The bundled MySQL database driver does not support caching_sha2_password authentication which
is the default for MySQL starting from version 8. Either select Legacy Authentication Method when
installing MySQL, or use the database driver installed along with MySQL. The database driver gets
installed when installingMySQLwith Server-only option, however these two folders should be included
into system path: C:\Program Files\MySQL\MySQL Server 8.0\lib C:\Program Files\

MySQL\MySQL Server 8.0\bin.
Note for Microsoft SQL Server:
Please refer to the Appendix for detailed Windows/MSSQL setup installation instructions instructions
Note for Oracle:
We recommend to use the native database driver (oracle.ddr).

24 Chapter 3. Installation

NetXMS Administrator Guide, Release 5.2.0

6. On the Ready to Install window, check whether everything is correct, then press the Install button.
7. After installation, start the Netxms client and connect with the following credentials

Server default credentials:
Login: admin
Password: netxms

3.5.2 Agent
1. Download the latest version from http://www.netxms.org/download/. You will need Windows Agent installer

(named nxagent-VERSION.exe or nxagent-VERSION-x64.exe, for example nxagent-5.0.8-x64.exe).
2. Run the installer package on the target server. The installation wizard will be displayed. Follow the prompts until

the NetXMS Server window opens:

Enter the IP address or host name of your NetXMS server. You can specify multiple management servers, sepa-
rating them by commas. Press the Next button to continue.

3. The subagent selection window will open:

3.5. Installing on Windows 25

http://www.netxms.org/download/

NetXMS Administrator Guide, Release 5.2.0

In this window you can select which subagents you wish to load. Each subagent extends the agents functionality,
e.g.:

Subagent Description
filemgr.nsm Provides access to specified folders on the monitored host from the NetXMS Management

Client File Manager. This is also used for distributing Agent Policy configuration files (see
Agent Policies.)

logwatch Allows monitoring log files and Windows Event Log and sending matched events to NetXMS
server.

ping.nsm Adds the possibility to send ICMP pings from the monitored host. Ping round-trip times can
be collected by management server.

netsvc.nsm,
portcheck.nsm

Adds the possibility to check network services (like FTP or HTTP) from the monitored host.

winperf.nsm Provides access to Windows performance counters. This subagent is required if you need to
collect CPU utilization from monitored host.

wmi.nsm Provides access to WMI data.
ups.nsm Adds support for UPS monitoring. The UPS can be attached to host via a serial cable or USB.

For more information on subagents, please refer to Subagents.
1. Follow the prompts to complete the installation.

3.5.3 Management Client
Desktop Management Client:

1. Download the latest version from https://www.netxms.org/download/. Since version 3.8 there are three options
- archive (e.g. nxmc-5.0.8-win32-x64.zip), archive with bundled JRE (nxmc-5.0.8-win32-x64-bundled-jre.zip)
and installer, which also has JRE bundled (e.g. netxms-client-5.0.8-x64.exe). If using the archive without JRE,

26 Chapter 3. Installation

https://www.netxms.org/download/

NetXMS Administrator Guide, Release 5.2.0

make sure you have JRE version 11 or 15 installed. Due to a limitation of the Eclipse platform used to build the
Management Client, only an x64 build is currently provided.

2. If using the archive version, extract the zip in the preferred directory. If using the installer, launch it and follow the
instructions.

3. Run the nxmc file from the extracted catalog, or launch from the Windows Start Menu, if you used the installer.
Web Management Client:
On the Windows platform there are two options: one is to manually install the .war file into a servlet container and the
second one is to use the netxms-webui-VERSION-x64.exe installer. The installer will install Jetty and copy the .war file
into required folder. Here the installation via the installer is described:

1. Download the latest version from https://www.netxms.org/download. You will need Windows installer netxms-
webui-VERSION-x64.exe (e.g.: netxms-webui-5.0.8-x64.exe). Due to a limitation of the Eclipse platform used to
build the Management Client, only an x64 build is currently provided.

2. Run the installer package on your server. The Installation wizard will be displayed. Follow the prompts. The
installer allows to change the installation path and port.

3. After the installation procedure is finished, check that the WEB GUI is available at http://SERVER_IP:SERVER_
PORT/nxmc/

3.5.4 Unattended installation of the NetXMS Agent
The Windows Agent installer, named nxagent-VERSION.exe, for example nxagent-5.0.8-x64.exe, has various command
line options for unattended installation. Installation will ignore any configuration file options (/CONFIGENTRY, /NO-
SUBAGENT, /SERVER, /SUBAGENT, etc) if a config file already exists or if the /CENTRALCONFIG option is used.
However, it is possible to delete and recreate the configuration file using the /FORCECREATECONFIG command line
option.
The options are the following:

3.5. Installing on Windows 27

https://www.netxms.org/download
http://SERVER_IP:SERVER_PORT/nxmc/
http://SERVER_IP:SERVER_PORT/nxmc/

NetXMS Administrator Guide, Release 5.2.0

Option Description
/CENTRALCONFIG Enable read configuration from server on startup. See Agent configuration files on

server for more information.
/CONFIGENTRY=value It can be used to add any parameter to the configuration file during initial install.

You can specify it multiple times to add multiple lines. Section names can be added
as well.

/CONFIGIN-
CLUDEDIR=path

Set folder containing additional configuration files (will be set in configuration file
as ConfigIncludeDir).

/DIR=path Set installation directory (default is C:\NetXMS).
/FILESTORE=path Sets directory to be used for storing files uploaded by management server(s) (will

be set in configuration file as FileStore).
/FORCECREATECONFIG Delete existing agent configuration file and recreate it. However, settings stored by

installer in Windows registry will be used, if not explicitly specified by command
line parameters. See /IGNOREPREVIOUSDATA.

/IGNOREPREVIOUSDATA Ignore any settings from previous install that are not explicitly specified in current
run. This is related to settings that can be changedwhen installer is run inGUImode,
e.g. list of selected sub-agents. These settings are stored in Windows registry.

/LOCALCONFIG Use local configuration file (it is the default).
/LOG Causes Setup to create a log file in the TEMP directory of the user detailing file

installation and [Run] actions taken during the installation process.
/LOG=filename Same as /LOG, except it allows to specify a fixed path/filename to use for the log

file. If a file with the specified name already exists it will be overwritten. If the file
cannot be created, Setup will abort with an error message.

/LOGFILE=filename Set agent log file (will be set in configuration file as LogFile).
/MERGE-
TASKS=”tasknames”

Comma-separated list of tasks for installation. If a task is specified with ! character
prior to its name, it will be deselected. Possible values are fspermissions - set
hardened file system permissions, sessionagent - Install session agent, usera-
gent - Install user support application. e.g. /MERGETASKS="!fspermissions,
useragent"

/NOSUBAGENT=name Disable subagent name
/NOTUNNEL Disable tunnel operation (it is the default)
/REINSTALLSERVICE Reinstalls Windows service
/SERVER=IP Set server IP address or host name (will be set in the configuration file as Mas-

terServers).
/SILENT Don’t show installation wizard, only a progress bar
/SUBAGENT=name Add sub-agent loading directive to configuration file. You can specify this param-

eter multiple times to add more than one sub-agent. List of possible subagents:
Subagents.

/SUPPRESSMSGBOXES Don’t ask user anything. Only has an effect when combined with /SILENT and /
VERYSILENT.

/TUNNEL Enable tunnel operation to IP address specified with /SERVER=.
/VERYSILENT Don’t show anything

Example:
nxagent-5.0.8-x64.exe /VERYSILENT /SUPPRESSMSGBOXES /SERVER=10.0.0.1 /

SUBAGENT=UPS /SUBAGENT=FILEMGR /CONFIGENTRY=ZoneUIN=15 /CONFIGENTRY=[FILEMGR] /

CONFIGENTRY=RootFolder=C:\

This command will add 3 lines at the end of generated config file:

ZoneUIN=15

[FILEMGR]
(continues on next page)

28 Chapter 3. Installation

NetXMS Administrator Guide, Release 5.2.0

(continued from previous page)
RootFolder=C:\

3.5.5 Unattended uninstallation of NetXMS Agent
The uninstaller application is named unins???.exe and is located in the agent folder (C:\NetXMS by default). The following
options are supported:

Option Description
/SILENT Don’t show uninstallation wizard, only a progress bar
/VERYSILENT Don’t show anything
/LOG Causes to create a log file in the TEMP directory of the user.
/LOG=filename Same as /LOG, except it allows to specify a fixed path/filename to use for the log

file.
/SUPPRESSMSGBOXES Don’t ask user anything. Only has an effect when combined with /SILENT and /

VERYSILENT.
/NORESTART Instructs the uninstaller not to reboot even if it would be necessary.

Example:
unins000.exe /SUPPRESSMSGBOXES /VERYSILENT /NORESTART

3.6 Install on Android
3.6.1 Management Client
To install Android management client download netxms-console-VERSION.apk (example: netxms-console-3.4.178.apk)
file from the http://www.netxms.org page. Check that installation of applications from unknown sources is allowed in
security settings of your phone. Run this installer on required device.
After the agent is installed, go to settings and in the main menu, connection part, set all required connection credentials:
server address, port, user name, password.

Note

The user configured for the connection should have the Login as mobile device user permission.

3.7 Installing from sources
3.7.1 Server

1. Download the source archive (netxms-VERSION.tar.gz) from https://www.netxms.org/download/. VERSION is
used in names instead of an actual version number.

2. Unpack the archive:
tar zxvf netxms-VERSION.tar.gz

3. Since version 3.8, the reporting server is being built along with the sources. This requires maven to be installed on
the system. You need Oracle and MS SQL JDBC drivers in your local maven repository.

The Oracle JDBC driver library can be obtained here: https://oracle.com/otn-pub/otn_software/jdbc/
199/ojdbc8.jar

3.6. Install on Android 29

http://www.netxms.org
https://www.netxms.org/download/
https://oracle.com/otn-pub/otn_software/jdbc/199/ojdbc8.jar
https://oracle.com/otn-pub/otn_software/jdbc/199/ojdbc8.jar

NetXMS Administrator Guide, Release 5.2.0

the Microsoft SQL JDBC driver library can be obtained from here: https://www.microsoft.com/en-us/
details.aspx?id=54671 You will need sqljdbc_4.2/enu/jre8/sqljdbc42.jar file from this archive.
To install these libraries: mvn install:install-file -DgroupId=com.microsoft.

sqlserver -DartifactId=sqljdbc4 -Dversion=4.2 -Dpackaging=jar

-Dfile=sqljdbc42.jar mvn install:install-file -DgroupId=com.oracle

-DartifactId=ojdbc8 -Dversion=12.2.0.1 -Dpackaging=jar -Dfile=ojdbc8.

jar

4. Change directory to netxms-VERSION and run the configure script:
cd netxms-VERSION

./configure --enable-release-build --with-server --with-pgsql --with-agent

Most commonly used options (check full list with ./configure --help):

Name Description
--prefix=DIRECTORY Installation prefix, all files go to the specified directory (e.g.

--prefix=/opt/netxms)
--with-server Build server binaries. You will need to select at least one DB driver

as well
--with-agent Build monitoring agent. It is strongly recommended to install agent

on a server box
--with-pgsql Build PostgresSQL DB Driver (if you plan to use PostgreSQL as

backend database)
--with-mysql Build MySQL DB Driver (if you plan to use MySQL as backend

database)
--with-odbc Build ODBC DB driver (if you plan to connect to your backend

database via unixODBC)
--with-sqlite Build SQLite DB driver (if you plan to use embedded SQLite

database as backend database)

5. Run build binaries and install them into /usr/local (unless changed with configure flag –prefix)
make

make install

6. Copy sample config file:
cp contrib/netxmsd.conf-dist /usr/local/etc/netxmsd.conf

By default, server load configuration file PREFIX/etc/netxmsd.conf (where PREFIX is installation pre-
fix set by configure), unless different file is specified with command line switch “-c”.

7. Create database user and adjust configuration file (netxmsd.conf) accordingly. Database creation examples can be
found there.

8. Further adjust server configuration file if required.
Detailed information about each configuration parameter can be found in section Server configuration file
(netxmsd.conf).

9. Create required tables and load initial configuration using nxdbmgr utility:

/usr/local/bin/nxdbmgr init

10. Run server:

30 Chapter 3. Installation

https://www.microsoft.com/en-us/details.aspx?id=54671
https://www.microsoft.com/en-us/details.aspx?id=54671

NetXMS Administrator Guide, Release 5.2.0

/usr/local/bin/netxmsd -d

3.7.2 Agent
1. Download the source archive (netxms-VERSION.tar.gz) from https://www.netxms.org/download/. VERSION is

used in names instead of an actual version number.
2. Unpack the archive:

tar zxvf netxms-VERSION.tar.gz

3. Change directory to netxms-VERSION and run the configure script:
cd netxms-VERSION

./configure --enable-release-build --with-agent

Most commonly used options (check full list with ./configure --list):

Name Description
--prefix=DIRECTORY Installation prefix, all files go to the specified directory
--with-agent Build monitoring agent. It is strongly recommended to install the

agent on a server

4. Run build binaries and install them into /usr/local (unless changed with configure flag --prefix)
make

make install

5. Copy sample config file:
cp contrib/nxagentd.conf-dist /usr/local/etc/nxagentd.conf

By default the agent load configuration file is PREFIX/etc/netxmsd.conf (where PREFIX is installation
prefix set by configure), unless a different file is specified with the command line switch “-c”.

6. Adjust the agent configuration file if required.
Detailed information about each configuration parameter can be found in section Agent configuration file (nxa-
gentd.conf).
Minimal required configuration:

MasterServers = 172.16.1.1 # server IP - agent will drop connections unless␣

↪→address is provided here

LogFile = /var/log/nxagentd

7. Run agent:

/usr/local/bin/nxagentd -d

3.8 Customizing the compilation process
3.8.1 Adding additional compiler or linker flags
(e.g. fixing atomics)

3.8. Customizing the compilation process 31

https://www.netxms.org/download/

NetXMS Administrator Guide, Release 5.2.0

3.9 WebUI additional configuration
There are a few settings available for configuration of the WebUI.

• autoLoginOnReload - autologin on page reload in browser (default: true)
• enableCompression - enable protocol compression between Web UI and server process (default: true)
• loginFormImage - path to custom login image
• loginFormImageBackground - colour of background around custom login image
• loginFormImageMargins - margins in px around custom login image (default: 10)
• server - server DNS name or IP (default: 127.0.0.1)

There are multiple ways to set the connection configuration from WebUI to NetXMS server. Configuration is checked in
this order:

1. Using JNDI. Environment should be set like nxmc/NAME for example: nxmc/server
2. nxmc.properties properties file in the class path of your application server. This file should be created

in ini format: NAME=VALUE. For example:

server = 127.0.0.1

Default locations:
Jetty
Tomcat
The default location of this file on Debian and Ubuntu is in /usr/share/tomcat9/lib. Other Linux
distributions may use a different location.
Oracle Weblogic
$WEBLOGIC_HOME/user_projects/domains/YOURDOMAIN

3. jvm parameter in format -Dnxmc.NAME=VALUE. For example: -Dnxmc.server=127.0.0.1
4. Environment variable NXMC_NAME=VALUE. For example NXMC_server=127.0.0.1
5. If none of the above configurations exist, the Web UI tries to resolve the “NETXMS_SERVER” DNS

name as server connection.
6. If none of above configurations exist, the Web UI uses “127.0.0.1” as a server address.

3.9.1 Custom logo on login screen
It is possible to change the default logo on the login screen to a custom image by setting the loginFormImage property in
nxmc.properties file. The image file must be located within the application server class path and the file name must be
given relative to the class path root with a leading slash. For example, if the custom image is in a file logo.jpg located in
the same directory as nxmc.properties, the correct entry will be:

loginFormImage = /logo.jpg

3.9.2 How to configure the NetXMS web client with jetty in Linux
1. Download the latest version of Jetty (12.0.13 at the moment of writing).

curl -O https://repo1.maven.org/maven2/org/eclipse/jetty/jetty-home/12.0.13/jetty-

↪→home-12.0.13.tar.gz

32 Chapter 3. Installation

NetXMS Administrator Guide, Release 5.2.0

2. Create directories and extract Jetty, then create the initial configuration by running start.jar.

tar -xvf jetty-home-12.0.13.tar.gz -C /opt

ln -s /opt/jetty-home-12.0.13 /opt/jetty-home-12

mkdir -p /opt/netxms-webui/{etc,logs} && cd /opt/netxms-webui

java -jar /opt/jetty-home-12/start.jar --add-modules=ee8-deploy,gzip,http,http2,https,

↪→logging-logback,plus,server,ssl,work

3. Download the war file (version 5.1.2 at the moment of writing) and place it in the webapps directory.

curl -o webapps/ROOT.war https://netxms.com/releases/5.1/nxmc-5.1.2.war

4. Generate ssl key (for testing purposes) and adjust the ssl.ini file. A reverse proxy with proper certificate should be
used in production. Adjust DN, keyStorePassword and keyStorePath as per requirements.

keytool -genkeypair -alias jetty -keyalg RSA -keysize 2048 -keystore /opt/netxms-

↪→webui/etc/keystore.p12 -storetype PKCS12 -storepass password -keypass password -

↪→validity 3650 -dname "CN=netxms-webui, OU=netxms, O=netxms, L=netxms, ST=netxms,␣

↪→C=netxms"

sed 's,# jetty.sslContext.keyStorePassword=,jetty.sslContext.

↪→keyStorePassword=password,' -i'' start.d/ssl.ini

5. Run Jetty to verify the configuration. Once verified, stop with Ctrl+C.

java -Dnxmc.logfile=/opt/netxms-webui/logs/nxmc.log -jar /opt/jetty-home-12/start.jar

6. Create a systemd service file for Jetty (sample is bellow).

systemctl edit --force --full netxms-webui.service

[Unit]

Description=NetXMS WebUI

StartLimitIntervalSec=0

[Service]

Type=simple

WorkingDirectory=/opt/netxms-webui

Environment=JETTY_HOME=/opt/jetty-home-12

Environment=JETTY_BASE=/opt/netxms-webui

User=jetty

Group=jetty

ExecStart=java -Dnxmc.logfile=/opt/netxms-webui/logs/nxmc.log -jar /opt/jetty-home-

↪→12/start.jar

Restart=on-failure

RestartSec=30

TimeoutSec=900

[Install]

WantedBy=multi-user.target

EnableDefaultCounters = yes

3.9. WebUI additional configuration 33

NetXMS Administrator Guide, Release 5.2.0

7. Enable netxms-web.service and start it.

systemctl enable --now netxms-web.service

3.10 Default login credentials
The default login is “admin” with password “netxms”. On first login, the user will be prompted to change their password
immediately.
If required, the password can be reset back to default using nxdbmgr utility.

3.11 Database creation examples
This chapter provides some database creation SQL examples. Please consult the relevant database documentation for the
initial install.

3.11.1 PostgreSQL
createuser -P netxms

createdb -O netxms netxms

If the TimescaleDB extension is to be used, it should be added to the newly created database:

psql netxms

CREATE EXTENSION IF NOT EXISTS timescaledb CASCADE;

\q

Configuration file example:

DBDriver = pgsql.ddr

DBServer = localhost

DBName = netxms

DBLogin = netxms

DBPassword = PaSsWd

3.11.2 MariaDB
echo "CREATE DATABASE netxms CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;" |␣

↪→mysql -u root -p

echo "CREATE USER 'netxms'@'localhost' IDENTIFIED BY 'PaSsWd';" | mysql -u root -p

echo "GRANT ALL on netxms.* to 'netxms'@'localhost';" | mysql -u root -p

Configuration file example:

DBDriver = mariadb.ddr

DBServer = localhost

DBName = netxms

DBLogin = netxms

DBPassword = PaSsWd

34 Chapter 3. Installation

NetXMS Administrator Guide, Release 5.2.0

3.11.3 MySQL
echo "CREATE DATABASE netxms CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;" |␣

↪→mysql -u root -p

echo "CREATE USER 'netxms'@'localhost' IDENTIFIED BY 'PaSsWd';" | mysql -u root -p

echo "GRANT ALL on netxms.* to 'netxms'@'localhost';" | mysql -u root -p

Configuration file example:

DBDriver = mysql.ddr

DBServer = localhost

DBName = netxms

DBLogin = netxms

DBPassword = PaSsWd

3.11.4 Oracle
-- USER SQL

CREATE USER netxms IDENTIFIED BY PaSwD

DEFAULT TABLESPACE USERS

TEMPORARY TABLESPACE TEMP;

-- QUOTAS

ALTER USER netxms QUOTA UNLIMITED ON USERS;

-- ROLES

GRANT CREATE SESSION, CREATE TABLE, CREATE PROCEDURE TO netxms;

Configuration file example:

DBDriver = oracle.ddr

DBServer = //127.0.0.1/XE # instant client compatible connection string

DBLogin = netxms

DBPassword = PaSsWd

3.11.5 How to install NetXMS server on Windows Server with local Microsoft SQL
Server Express

1. Login as adiministrator
2. Install Microsoft SQL Server Express with defaut options.

If enabling mixed authentication mode:
3. Enable mixed authentication mode as per https://learn.microsoft.com/en-us/sql/database-engine/

configure-windows/change-server-authentication-mode Don’t forget to restart SQL Server after changing
authentication mode.

4. Run NetXMS Server installer. When prompted for database information, use the following answers:
• Server type: MS SQL
• Server name: localhostSQLEXPRESS
• Database name: (any valid name, we use “netxms”)
• Login name: (any valid account name, we use “netxms”)
• Password: (any password complex enough to match OS password policy)

3.11. Database creation examples 35

https://learn.microsoft.com/en-us/sql/database-engine/configure-windows/change-server-authentication-mode
https://learn.microsoft.com/en-us/sql/database-engine/configure-windows/change-server-authentication-mode

NetXMS Administrator Guide, Release 5.2.0

• Create database and database user: check
• DBA login name: *
• DBA password: (left empty)

This assumes the currently logged in user has DBA access to the SQL Server instance. This should be the case if SQL
Server was just installed by the same user. An alternative approach is to enable the “sa” user in SQL server and use sa
login and password as DBA login name and password.
The installer should create database, database user, assignthe user as database owner, and the NetXMS Core service
should start successfully.
If mixed authentication is not an option:
Currently the installer does not support automatic database creation for Windows authentication mode, so there will be
more manual steps.

3. Login to SQL Server Management Studio
4. Create a new database with the default owner (owner should be set to currently logged in administrator user)
5. Run the NetXMS Server installer. On “Select additional tasks” page uncheck “Start NetXMS Core service”.
6. When prompted for database information, use the following answers:

• Server type: MS SQL
• Server name: localhostSQLEXPRESS
• Database name: (database name from step 4)
• Login name: *
• Password: (left empty)
• Create database and database user: uncheck

7. After installation is complete, go to “Services”, find the “NetXMS Core” service, and set it to login as administrator
user (same user used for installation)

8. Start NetXMS Core service

3.11.6 How to install NetXMS server onWindowsServer with remoteMicrosoft SQL
Server Express

Assumptions:
• Both the SQL Express Server and the NetXMS Server are in the same domain
• TCP/IP is enabled in SQL Server network properties
• TCP/IP is configured to use a fixed port
• A firewall rule is added to allow incoming connections on the SQL Server TCP port (it may be needed to add
this manually)

• Mixed authentication mode is already enabled on SQL Server (only for scenario 1 below)
If using a SQL account for NetXMS services is acceptable

1. Log in to the NetXMS Server machine with a domain account that has local administrator rights as well as sysadmin
rights on SQL Server

2. Install ODBC Driver for SQL Server
3. Run the NetXMS Server installer. When prompted for database information, use the following answers:

36 Chapter 3. Installation

NetXMS Administrator Guide, Release 5.2.0

• Server type: MS SQL
• Server name: SQL server domain computer name or fully qualified DNS name (if the TCP port is not 1433,
then use the form server_name,port)

• Database name: (any valid name, we use “netxms”)
• Login name: (any valid account name, we use “netxms”)
• Password: (any password complex enough to match OS password policy)
• Create database and database user: check
• DBA login name: *
• DBA password: (left empty)

The installer should create database, database user, assign user as database owner, and the NetXMS Core service should
start successfully.
In this scenario the server will use login and password on SQL server, so the service can continue to run under Local
System account, or you can change it to any domain account.
If the server has to use domain account for accessing the database

1. Install ODBC Driver for SQL Server
2. If not already done, create a new login on SQL Server for the domain user to be used by NetXMS Core service
3. Create the new database, assign login from step 2 as owner
4. Log in to the NetXMS Server machine with the same domain user
5. Run the NetXMS Server installer. On “Select additional tasks” page, uncheck “Start NetXMS Core service”.
6. When prompted for database information, use the following answers:

• Server type: MS SQL
• Server name: SQL server domain computer name or fully qualified DNS name (if the TCP port is not 1433,
then use the form server_name,port)

• Database name: (database name from step 4)
• Login name: *
• Password: (left empty)
• Create database and database user: uncheck

7. After installation is complete, go to “Services”, find the “NetXMS Core” service, and set it to login as administrator
user (same user used for installation)

8. Start the NetXMS Core service

3.11. Database creation examples 37

NetXMS Administrator Guide, Release 5.2.0

38 Chapter 3. Installation

CHAPTER

FOUR

UPGRADE

4.1 Upgrading on Debian or Ubuntu
4.1.1 Upgrading server and agent

1. It’s recommended to check database for possible inconsistencies prior to the upgrade. To do this, stop
the server and run command:

nxdbmgr check

Proceed to the next step only if database checker does not report any errors!
2. To update NetXMS server and agent packages run command:

apt-get update && apt-get upgrade

During package upgrade database schema should be upgraded as well and NetXMS server would start
automatically. However, in some cases (e.g. if database engine packages were also upgraded) automatic
database upgrademay not happen. If this is the case, NetXMS server won’t get started and it’s log would
show, e.g.: Your database has format version 41.07, but server is compiled for

version 41.18. To upgrade the database, run command:

nxdbmgr upgrade

Once database upgrade is complete, start the server.

Management client
Desktop Management Client:

1. Download the latest version from http://www.netxms.org/download. You will need Linux installer (named
nxmc-VERSION-linux-gtk-x86.tar.gz or nxmc-VERSION-linux-gtk-x64.tar.gz, for example nxmc-5.1.0-linux-
gtk-x64.tar.gz).

2. Extract and replace old management client with the new one.

tar zxvf nxmc-VERSION-linux-gtk-x86.tar.gz -C /DIRECTORY

3. Run nxmc file from extracted catalog.
Web Management Client:

1. Download latest version of WAR file from Web Interface Binaries section http://www.netxms.org/download/
(named nxmc-VERSION.war, for example nxmc-5.1.0.war).

39

http://www.netxms.org/download
http://www.netxms.org/download/

NetXMS Administrator Guide, Release 5.2.0

2. Replace old WAR file with the new one.
Sometimes it’s possible that new WAR file is not detected and previous version of WAR continues to run. In this
case stop servlet container, delete the WAR file. Then start servlet container and copy the war file to webapps
directory.

4.2 Upgrading on Red Hat, Fedora, CentOS or ScientificLinux
4.2.1 Upgrading
Server

1. Download the latest version from http://www.netxms.org/download, if you don’t have it. You will need
source archive (named netxms-VERSION.tar.gz, for example netxms-1.2.15.tar.gz). Please note that
in the following steps VERSION will be used as a substitution for an actual version number.

2. Unpack the archive:

tar zxvf netxms-5.1.0.tar.gz

3. Change directory to netxms-version and run configure script and make:

cd netxms-5.1.0

sh ./configure --enable-release-build --with-server --with-mysql

make

Be sure to include all configuration options that were used at installation time.
4. Stop NetXMS server.
5. Stop NetXMS agent.
6. Check database for possible inconsistencies:

nxdbmgr check

Proceed to the next step only if database checker does not report any errors!
7. Run make install:

make install

8. Upgrade database:

nxdbmgr upgrade

9. Start NetXMS agent.
10. Start NetXMS server.

Agent
1. Download the latest version from http://www.netxms.org/download, if you don’t have it. You will need

source archive (named netxms-VERSION.tar.gz, for example netxms-5.1.0.tar.gz). Please note that in
the following steps VERSION will be used as a substitution for an actual version number.

2. Unpack the archive:

40 Chapter 4. Upgrade

http://www.netxms.org/download
http://www.netxms.org/download

NetXMS Administrator Guide, Release 5.2.0

tar zxvf netxms-5.1.0.tar.gz

3. Change directory to netxms-version and run configure script and make:

cd netxms-5.1.0`

sh ./configure --enable-release-build --with-agent

make

Be sure to include all configuration options that were used at installation time.
4. Stop NetXMS agent.
5. Run make install:

make install

6. Run agent:

/usr/local/bin/nxagentd -d

Management Client
Desktop Management Client:

1. Download the latest version from http://www.netxms.org/download. You will need Linux installer(named
nxmc-VERSION-linux-gtk-x86.tar.gz or nxmc-VERSION-linux-gtk-x64.tar.gz, for example nxmc-5.1.0-linux-
gtk-x64.tar.gz).

2. Extract and replace old management client with the new one.

tar zxvf nxmc-VERSION-linux-gtk-x86.tar.gz -C /DIRECTORY

3. Run nxmc file from extracted catalog.

cd /<path_to_nxmc>

./nxmc &

Web Management Client:
1. Download latest version of WAR file from Web Interface Binaries section http://www.netxms.org/download/

(named nxmc-VERSION.war, for example nxmc-5.1.0.war).
2. Replace old WAR file with the new one.

Sometimes it’s possible that new WAR file is not detected and previous version of WAR continues to run. In this
case stop servlet container, delete the WAR file. Then start servlet container and copy the war file to webapps
directory.

4.3 Upgrading on Windows
4.3.1 Upgrade

4.3. Upgrading on Windows 41

http://www.netxms.org/download
http://www.netxms.org/download/

NetXMS Administrator Guide, Release 5.2.0

Server
1. Download the latest version from http://www.netxms.org/download, if you don’t have it. You will need

Windows installer (named netxms-VERSION.exe, for example netxms-5.1.0.exe).
2. Stop NetXMS server.
3. Check database for possible inconsistencies:

C:\NetXMS\bin> nxdbmgr check

Proceed to the next step only if database checker does not report any errors!
4. Run NetXMS installer and follow the prompts. Normally, you will not need to change any settings on

installation wizard windows. Alternatively, you can run the installer with /SILENT option to disable
any prompts:

C:\Download> netxms-5.1.0.exe /SILENT

5. Check whether NetXMS Server service is running again. If it’s not, most likely you have to upgrade
your database to newer version. To upgrade database, use nxdbmgr utility:

C:\NetXMS\bin> nxdbmgr upgrade

6. Start NetXMS server, if it is not already started.

Agent
We highly recommend using centralized agent upgrade feature for agent upgrades. However, if you decide to upgrade
agent manually, it can be done in just a few steps:

1. Download the latest version from http://www.netxms.org/download, if you don’t have it. You will need
Windows Agent installer (named nxagent-VERSION.exe or nxagent-VERSION-x64.exe, for example
nxagent-5.1.0.exe).

2. RunNetXMS agent installer and follow the prompts. Normally, you will not need to change any settings
on installation wizard dialog windows. Alternatively, you can run installer with /SILENT option to
disable any prompts:

C:\Download> nxagent-5.1.0.exe /SILENT

Management Client
Desktop Management Client:

1. Download the latest version from http://www.netxms.org/download. You will need Windows installer (named
nxmc-VERSION-win32-x86.zip or nxmc-VERSION-win32-x64.zip, for example nxmc-5.1.0-win32-x64.zip).

2. Replace old folder with content of the zip.
3. Run nxmc.exe file from extracted catalog.

Web Management Client:
1. Download latest version of WAR file from Web Interface Binaries section http://www.netxms.org/download/ (

named nxmc-VERSION.war, for example nxmc-5.1.0.war).
2. Replace old WAR file with the new one. Default path: INSTALLATION_DIR\\webapps.

42 Chapter 4. Upgrade

http://www.netxms.org/download
http://www.netxms.org/download
http://www.netxms.org/download
http://www.netxms.org/download/

NetXMS Administrator Guide, Release 5.2.0

Sometimes it’s possible that new WAR file is not detected and previous version of WAR continues to run. In this
case stop servlet container, delete the WAR file. Then start servlet container and copy the war file to webapps
directory.

4.4 Generic upgrade using source tarball
4.4.1 Server

1. Download the latest version from http://www.netxms.org/download, if you don’t have it. You will need
source archive (named netxms-VERSION.tar.gz, for example netxms-5.1.0.tar.gz). Please note that in
the following steps VERSION will be used as a substitution for an actual version number.

2. Unpack the archive:

tar zxvf netxms-5.1.0.tar.gz

3. Change directory to netxms-version and run configure script and make:

cd netxms-5.1.0

sh ./configure --enable-release-build --with-server --with-mysql

make

Be sure to include all configuration options that were used at installation time.
4. Stop NetXMS server.
5. Stop NetXMS agent.
6. Check database for possible inconsistencies:

nxdbmgr check

Proceed to the next step only if database checker does not report any errors!
7. Run make install:

make install

8. Upgrade database:

nxdbmgr upgrade

9. Start NetXMS agent.
10. Start NetXMS server.

4.4.2 Agent
1. Download the latest version from http://www.netxms.org/download, if you don’t have it. You will need

source archive (named netxms-VERSION.tar.gz, for example netxms-5.1.0.tar.gz). Please note that in
the following steps VERSION will be used as a substitution for an actual version number.

2. Unpack the archive:

tar zxvf netxms-5.1.0.tar.gz

4.4. Generic upgrade using source tarball 43

http://www.netxms.org/download
http://www.netxms.org/download

NetXMS Administrator Guide, Release 5.2.0

3. Change directory to netxms-version and run configure script and make:

cd netxms-5.1.0

sh ./configure --enable-release-build --with-agent

make

Be sure to include all configuration options that were used at installation time.
4. Stop NetXMS agent.
5. Run make install:

make install

6. Run agent:

/usr/local/bin/nxagentd -d

4.5 Centralized agent upgrade
You can use Package management functionality to perform centralized upgrade of NetXMS agents.

44 Chapter 4. Upgrade

CHAPTER

FIVE

QUICK START

In this section will describe basic configuration to be performed after server and agent clean install. Configuration for
monitoring some common metrics like CPU usage of file system free space will also be shown.

5.1 Default Credentials
Server login default credentials
Login: admin
Password: netxms

5.2 Basic agent configuration
Minimal configuration that should be set for agent is server address and path to log file. Action differ depending on a
platform where agent is installed. On Windows systems configuration file is automatically generated and populated by
installer, on UNIX systems it should be created/edited manually.
See below for editing agent configuration file on Windows and UNIX/Linux platforms.

5.2.1 Windows
In case if while installation MasterServer was set correctly no action is required from user.
Automatically generated configuration file can be found there: installation directory\etc\nxagentd.conf

(by default C:\NetXMS\etc\nxagentd.conf.)
Configuration file for Windows should look like this:

#

Sample agent’s configuration file

#

MasterServers = 127.0.0.1

LogFile = {syslog}

5.2.2 UNIX/Linux
After agent is installed on a UNIX/Linux system it is required to create/edit file /etc/nxagentd.conf. This file should
contain at least this information:

45

NetXMS Administrator Guide, Release 5.2.0

#

Sample agent’s configuration file

#

MasterServers = 127.0.0.1

LogFile = /var/log/nxagentd

5.3 Basic server tuning
Server has two types of configuration: configuration file parameters and server configuration variables.
For server configuration file minimal requirements are path to log file, database driver name and all required credentials
depending on database. Location and required actions depends on what OS is used. More about OS specific configuration
search in OS subsections of this chapter.
List of possible database drivers:

• mssql Driver for Microsoft SQL database.
• mysql Driver for MySQL database.
• odbc ODBC connectivity driver (you can connect to MySQL, PostgreSQL, MS SQL, and Oracle via ODBC).
• oracle Driver for Oracle database.
• pgsql Driver for PostgreSQL database.
• sqlite Driver for embedded SQLite database.

See below for editing server configuration file on Windows and UNIX/Linux platforms.

5.3.1 Windows
For Windows systems this information is added to configuration file while installation procedure. It can be check that
all data was set correctly in this file: 'installation directory'\etc\netxmsd.conf (by default C:\NetXMS\
etc\netxmsd.conf.)
Example of sample Windows configuration for mysql:

#

Sample server configuration file

#

DBDriver = mysql.ddr

DBServer = localhost

DBName = netxms_db

DBLogin = netxms

DBPassword = password

LogFile = {syslog}

5.3.2 UNIX/Linux
For UNIX based systems /etc/netxmsd.conf file should be created/populated manually.
Configuration file example for oracle database:

46 Chapter 5. Quick start

NetXMS Administrator Guide, Release 5.2.0

DBDriver = oracle.ddr

DBServer = ServerIP/Hostname.DomainName #Here is service (full database name), not SID

DBName = netxms

DBLogin = netxms

DBPassword = PaSwD

LogFile = /var/log/netxmsd

5.3.3 Server configuration variables
There are quite a few important server parameters to be set right after installation. These parameters are accessible through
the Server Configuration window in the management client. To open it, click on Configuration ‣ Server Configuration. To
edit a setting, double click on the row in the table or right-click and select Edit. The following parameters may need to be
changed:

Parameter Description
ThreadPool.Poller.MaxSize This parameter represents maximum thread pool size. This pool pro-

vides threads for all types of polls: Status poll, Configuration poll, etc.
In case of big load on a server number of threads will be increased up
to this size. When load come back to normal, number of threads will
be automatically decreased down to base size. If you plan to monitor
large number of hosts, increase this parameter from the default value
to approximately 1/5 of host count.

ThreadPool.Poller.BaseSize This parameter represents base thread pool size. This is minimum
number of threads that will always run. If you plan to monitor large
number of hosts increase this parameter from the default value to ap-
proximately 1/10 of host count.

ThreadPool.DataCollector.MaxSize Maximum number of threads that perform data collection. If you
plan to monitor large number of hosts, increase this number to ap-
proximately 1/5 of host count. Use larger value if you plan to gather
many DCIs from each host.

ThreadPool.DataCollector.

BaseSize

Minimum number of data collection threads what will always run. For
large number of hosts increase to approximately 1/10 of host count.

Syslog.EnableListener Set this parameter to True if you want to enable NetXMS built-in
syslog server.

5.4 Notification channels
Various ways how to send notifications - email, messengers, SMS, etc are configured via Notification Channels. This
allows to create actions that will send notification on defined events.
Notification channels are configured on Configuration ‣ Notification Channels. Each channel has textual configuration, e.g.
for SNMP driver configuration may look like this:

Server=smtp.example.com

FromAddr=netxms@example.com

FromName=NetXMS Server

IsHTML=no

TLSmode=TLS

Login=smtp-username

Password=password

Information about notification channel configuration parameters is available here: Notification channels.

5.4. Notification channels 47

NetXMS Administrator Guide, Release 5.2.0

5.5 Actions and Alarms
In this section we will configure alarm automatic creation and termination and message sending via a notification channel
on predefined SYS_THRESHOLD_REACHED and SYS_THRESHOLD_REARMED events.
Given that a notification channel is configured, we can create an action in Configuration ‣ Actions. Recipient address
is specified in action’s properties, it’s possible to set several recipients separated by semicolon (;). Subject and message
fields supportMacros for Event Processing - in below example when message will be sent, macros “%n” will be substituted
with name of the node and “%m” will be substituted with event message. Value of event message is specific for each
event and can be found in event template (Configuration ‣ Event Templates).

Next step is to configure event processing policies. It is done in Configuration ‣ Event Processing Policy. A
number of rules is included out-of-the-box, including rules that react to SYS_THRESHOLD_REACHED and
SYS_THRESHOLD_REARMED events. In these rules we will add email sending action that we have configured above.
Alarm created by the rule for SYS_THRESHOLD_REACHED has a key which is composed from
“SYS_THRESHOLD_REACHED_” text, id of DCI and ID of node. This allows to resolve or terminate alarms
automatically - for example rule for SYS_THRESHOLD_REARMED automatically terminates alarm using the key.
After all configuration is done Event Processing Policy should be saved.

48 Chapter 5. Quick start

NetXMS Administrator Guide, Release 5.2.0

5.6 SNMP Defaults
If you have a number of SNMP devices with same credentials on your network, you can configure default community
strings and authorization credentials. This information is set in Configuration -> Network Credentials.
When performing configuration poll, provided commynity strings, USM credentials and network ports will be tried se-
quentially until a combination that allows comminication with a device is found.

5.7 Passive discovery
It is recommended to enable passive discovery when it is required to add all nodes in local network. In case if NetXMS
server has access to switches and routers via SNMP, all devices in network will be added automatically by discovery
process.
To enable passive network discovery open Configuration –> Network Discovery. There in General section select Passive
only option. Network discovery will be using default SNMP credentials that were discussed above in SNMP Defaults
section. Other options that can be set depending on requirements:

• Option to use SNMP trap source for further network discovery
• Option to set filer that will define rules for not adding nodes to NetXMS server

In our configuration we will not use filter to add all node available on our network and turn on option to use SNMP trap
source address for discovery. After all configuration is done remember to save it.

5.6. SNMP Defaults 49

NetXMS Administrator Guide, Release 5.2.0

5.7.1 Notes
If you have enabled automatic network discovery, wait for initial network discovery completion. This process can take
time, depending on size and complexity of your network. For large networks, we recommend that you let NetXMS
run over night to gather the majority of network information available. Once devices are discovered, they appear under
appropriate subnets in the Network perspective.
Please note that for successful network discovery your network must meet the following requirements:

• NetXMS server must have access to switches and routers via SNMP.
• All your network devices credentials (community string and credentials for SNMP v3) should be added to default
credential list in Network Credentials.

5.8 Manually add node
If the automatic network discovery does not detect all of your hosts or devices, or you decide not to use network discovery
at all, you may need to manually add monitored nodes to the system. The easiest way to accomplish this is to right-click on
Infrastructure Services in the Infrastructure perspective and select Create node. You will be presented with the following
dialog window:

50 Chapter 5. Quick start

NetXMS Administrator Guide, Release 5.2.0

Fig. 1: Create Node window

Please note that adding a new node object may take some time, especially if a node is down or behind a firewall. After
successful creation, a new node object will be placed into appropriate subnets automatically. As soon as you add a new
node to the system, NetXMS server will start regular polling to determine the node status.

5.9 Data Collection items
In this section we will add data collection items (DCIs) for CPU usage monitoring and interface incoming traffic
via NetXMS agent or SNMP. Threshold configuration for these DCIs will be shown. This threshold will generate
SYS_THRESHOLD_REACHED event when defined condition is met and SYS_THRESHOLD_REARMED when col-
lected data value returns to normal.
Earlier we already described how to configure notification sending and alarm generation and termination based on events.
This chapter describes data collection and event generation based on collected data.
To add DCI for a node select the node, open Data Collection tab and click + button on the toolbar.

5.9. Data Collection items 51

NetXMS Administrator Guide, Release 5.2.0

5.9.1 CPU usage
Add CPU usage metric from agent metrics:

1. Check that as origin is selected NetXMS Agent.
2. Click on Select button - list of available agent metrics will open. Note: this list is populated on config-

uration poll.
3. Type in the input box “CPU”

Fig. 2: Metric Selection

52 Chapter 5. Quick start

NetXMS Administrator Guide, Release 5.2.0

Fig. 3: Properties

4. Select System.CPU.Usage
5. Go to Threshold tab
6. Click Add
7. Set that if last one polled value is gather than 85, then generate SYS_THRESHOLD_REACHED event,

when value is back to normal generate SYS_THRESHOLD_REARMED event.

5.9. Data Collection items 53

NetXMS Administrator Guide, Release 5.2.0

Fig. 4: Threshold

8. Click OK
Add CPU usage metric from SNMP metrics:

1. Check that as origin is selected NetXMS Agent.
2. Click on Select button
3. Type in the input box “.1.3.6.1.4.1.9.9.109.1.1.1.1.4” (this OID can may be not available for some

devices)
4. ClickWalk

Fig. 5: Mib Walk Result

5. Select CPU that should be monitored in our case it is “.1.3.6.1.4.1.9.9.109.1.1.1.1.4.1”

54 Chapter 5. Quick start

NetXMS Administrator Guide, Release 5.2.0

Fig. 6: Select Window For SNMP DCI

6. Click OK

Fig. 7: Properties

5.9. Data Collection items 55

NetXMS Administrator Guide, Release 5.2.0

7. Go to Threshold tab
8. Click Add
9. Set that if last one polled value is gather than 85, then generate SYS_THRESHOLD_REACHED event,

when value is back to normal generate SYS_THRESHOLD_REARMED event.

Fig. 8: Threshold

10. Click OK
Now you configured data collection of metric for CPU usage that will be collected every 60 seconds, data will be stored
for 30 days, with 1 threshold that will be activated when CPU usage is mote than 85%.

5.9.2 Interface traffic
There is shortcut to create all required DCIs for interface traffic for nodes where you have either NetXMS agent or SNMP.
Select interfaces for which should be created traffic collection DCIs and select Create data collection items from context
menu. Select checkboxes for the metrics that you need - DCIs will be created automatically.

56 Chapter 5. Quick start

NetXMS Administrator Guide, Release 5.2.0

5.9. Data Collection items 57

NetXMS Administrator Guide, Release 5.2.0

58 Chapter 5. Quick start

CHAPTER

SIX

AGENT MANAGEMENT

6.1 Introduction
NetXMS agent is daemon or service that runs on a node to provide additional monitoring options. This is optional for
installation, but it’s installation gives following advantages:

• Centralized configuration - you can change configuration of agent frommanagement client; if needed, you can even
store agent configs on NetXMS server

• More secure: communications between NetXMS server and agent is encrypted by default, additional authentication
on agent can be configured

• TCP instead of UDP is used for communications with agent - this can help in case of slow and poor quality links
• Remote command execution - agents can be used to execute commands on managed systems as a reaction to certain
events

• Proxy functionality: agent can be used as a proxy to reach agents on hosts not directly accessible by NetXMS server
• SNMP proxy: agent can be used as a proxy to reach remote SNMP devices
• SNMP Trap proxy: agent can be used as a proxy to get messages from remote SNMP device
• Syslog proxy: agent can be used as a proxy to get syslog messages from remote devices
• Modbus TCP proxy: agent can be used as a proxy to reach remote devices via Modbus TCP protocol
• Web service proxy: agent can be used as a proxy to reach remote web services
• TCP proxy: agent can be used to establish connection to TCP port on remote devices, e.g. to access web UI on a
device

• Extensible: you can add new metrics very easy using configuration option like ExternalMetric or by writing
your own subagents

• Easy upgrade - you can upgrade all agents at once from management client
• Provides file management possibilities on agent.
• Provides log file monitoring functionality.

6.2 Agent configuration files
Agent have 3 types of configuration files: master configuration file, additional configuration files and Agent Policy con-
figuration files. Master configuration file is the only mandatory file. Minimal configuration for master configuration file
is server address. Address should be set as MasterServers to be able to apply other configuration settings from the server.
After configuration file change agent should be restarted to apply new changes.

59

NetXMS Administrator Guide, Release 5.2.0

Two formats are supported for configuration files and configuration file policies: XML and ‘key = value’ format.
In ‘key = value’ format configuration file can contain one or more parameters in Parameter = Value form, each parameter
should be on its own line. Parameters are grouped into sections. Beginning of a section is denoted by section name in
square brackets (example: “[sectionName]”). Section named “[Core]” contains parameters for agent itself. It’s the default
section, if a configuration file starts from parameter and not from section name, parameters are treated as belonging to
“Core” section. Subagents’ parameters should be placed in separate sections named by subagent name. Same section
name can be present several times in the configuration file. Comments can be inserted after “#” sign
In XML format general tag should be <config>, second level tags contain section names and third level tags are agent or
subagent configuration parameters.
‘key = value’ format example:

[Core]

MasterServers = 10.0.0.4

SubAgent = winperf.nsm

Below is a configuration for winperf subagent, in separate section

[WinPerf]

EnableDefaultCounters = yes

Same example in XML format:

<config>

<Core>

<MasterServers>10.0.0.4</MasterServers>

<SubAgent>winperf.nsm</Subagent>

</Core>

<!-- Below is a configuration for winperf subagent, in separate section -->

<WinPerf>

<EnableDefaultCounters>yes</EnableDefaultCounters>

</WinPerf>

</config>

Example of configuration sections:

60 Chapter 6. Agent management

NetXMS Administrator Guide, Release 5.2.0

Detailed list of parameters can be found here: Agent configuration file (nxagentd.conf). The following parameters can be
specified in master configuration file only (and will be ignored if found in other configuration files): DataDirectory
and ConfigIncludeDir.

6.2.1 Master configuration file
File nxagentd.conf is a master configuration file for NetXMS agent. Depending on OS there are different locations, where
agent tries to find master configuration file.

UNIX-like systems
On UNIX systems master configuration file is searched in the following order:

1. If $NETXMS_HOME environment variable is set: $NETXMS_HOME/etc/nxagentd.conf
2. 'prefix'/etc/nxagentd.conf. ‘prefix’ is set during build configuration with --prefix='prefix' param-

eter. If that parameter was not specified during build, /usr/local is used.
3. /Database/etc/nxagentd.conf
4. /usr/etc/nxagentd.conf
5. /etc/nxagentd.conf

If configuration file is placed in a different location or named in a different way, then it’s location and file name can be
given to agent with -c parameter or by specifying $NXAGENTD_CONFIG environment variable. In this cause search in
the locations mentioned above is not performed.

Windows
On Windows location of NetXMS config is stored in the registry. Alternatively, location of configuration file can be
provided to agent with -c command line parameter. If there is no record in the registry and -c parameter is not specified,
then agent tries to find configuration files in the following locations:

1. 'installation directory'\etc\nxagentd.conf

6.2. Agent configuration files 61

NetXMS Administrator Guide, Release 5.2.0

2. C:\nxagentd.conf

6.2.2 Additional configuration files
To increase maintainability, configuration can be stored in multiple additional configuration files located in a specific
folder. Additional configuration files override (if a parameter supports only one value) or supplement (if parameter sup-
ports multiple values, e.g. list of servers or root folders for filemgr subagent) configuration parameters from master file.
Depending on OS there are different locations, where agent tries to find master configuration file.

UNIX-like systems
On UNIX systems it is searched in the following order (search is performed until first existing folder is found):

1. If $NETXMS_HOME environment variable is set: $NETXMS_HOME/etc/nxagentd.conf.d
2. 'prefix'/etc/nxagentd.conf.d. ‘prefix’ is set during build configuration with --prefix='prefix' pa-

rameter. If that parameter was not specified during build, /usr/local is used.
3. /Database/etc/nxagentd.conf.d
4. /etc/nxagentd.conf.d
5. /usr/etc/nxagentd.conf.d

A different configuration file folder name can be given by specifying $NXAGENTD_CONFIG_D environment variable.
In this cause search in the locations mentioned above is not performed.

Windows
On Windows location of configuration file folder is stored in the registry. If there is no record in the registry, then agent
tries to find configuration file folder in the following locations (search is performed until first existing folder is found):

1. 'installation directory'\etc\nxagentd.conf.d

2. C:\nxagentd.conf.d

6.2.3 Agent policy configuration files
Agent policies allow to store agent configuration on server and deliver it to the agents. More information about Policies
can be read there: Agent Policies.
On agent configuration policy files are stored in a separate folder named config_ap under DataDirectory folder. Every
policy is saved into a separate file named by policy GUID.

6.3 Agent configuration options from server
6.3.1 Edit configuration file remotely
Right click on node, select Edit agent’s configuration file from menu. When closing the editor, a dialog will be presented.
New configuration apply is performed on agent restart. So to immediately apply new configuration select Save and Apply.
This option will save configuration file and automatically restart the agent. If just Save is selected, then agent should be
manually restarted to apply new configuration.

6.3.2 Agent configuration files on server
Agent master configuration files can be stored on server side and requested by agent, if it is launched with -M

<serverAddress> command line parameter. Each configuration file on server is stored along with filter script. When
server receives configuration request from agent, it goes through available configs and executes filter scripts to find an
appropriate configuration.

62 Chapter 6. Agent management

NetXMS Administrator Guide, Release 5.2.0

If appropriate configuration file is found, it is sent to agent and old nxagentd.conf file is overwritten (or a new
nxagentd.conf file is created, if it did not exist). When agent can’t connect to server or server hasn’t found right
configuration, the agent is started with old configuration file. In case if agent configuration file does not exist and it is not
possible to get new one from the server - agent fails to start.
Doesn’t work with tunnel agent connection

Configuration
Each configuration has a name, filter script and the configuration file text.

• Name just identifies the configuration.
• Filter script is executed on configuration request to define which configuration file to send to the agent. Filter is
defined with help of NXSL scripting language. The following parameters are available in the filter script:

– $1 - IP address
– $2 - platform
– $3 - major version number
– $4 - minor version number
– $5 - release number

• Configuration file is the text of returned configuration file.

6.3.3 Agent configuration policy
Another option to store and distribute agent configuration are agent policies. In this case agent configuration is stored on
the server side as a policy belonging to template and deployed to the agent when corresponding template is applied to a
node. More information about policies and their types can be found in Agent Policies chapter.

6.3.4 Agent Configuration Policies vs. Agent Configuration Files on Server
A short lists of main points to compare both options:
Agent Configuration Files on Server:

• Assignment is based on rules described in filter scripts

6.3. Agent configuration options from server 63

NetXMS Administrator Guide, Release 5.2.0

• When configuration is changed, agent restart is needed to activate new configuration
• Config download from server is each time the agent starts (if option ‘-M servername’)
• When config is found on server, local Master config is overwritten, if not - existing Master config is used
• Works with master configuration file
• Does not required initial config (agent can be started without config), but in this case agent would fail if
nothing was returned from server

• Server provides configuration file without authorization which can be a security issue, if sensitive information
is present in configuration file.

• Doesn’t work via proxy
• Doesn’t work via tunnel agent connection

Agent Policies:
• Not possible for bootstrap agent
• After policy is deployed to agent, the agent should be restarted to activate new configuration.
• At minimum the server connection parameters must be in master config to be able to start agent
• Each policy is saved in a separate configuration file
• If policy and master config have same parameter that can be set only once (e.g. LogFile), then policy will
overwrite master config configuration

• If policy and master config have same parameter that can be set multiple times (e.g. Target for PING subagent
or Query for DBQUERY), then policy will merge lists of configs

• Can work via proxy
• Can work with tunnel agent connection

6.4 Agent Policies
Agent policies are additional configuration created by user (agent configuration or files) that are uploaded and updated on
agent when template is manually or automatically applied on the node. Agent policies belong to templates, so they are
applied to nodes to which a corresponding template is applied.
The following policy types are available:

• Agent configuration policy
• File delivery policy
• Log parser policy
• User support application policy

To create policy, select a template and click Agent policies tab. Click plus icon to create a new policy, give it a name,
choose correct policy type and click OK. Newly created policy will open for editing in a new tab. For example, for File
Delivery policy, right click and Add root directory… option will prompt you to create directory. Then, right click on
newly created directory and more options, like Add directory…, Add file…, Rename…, Permissions… and Delete… will
be avalable. Existing policy can be modified by right clicking it and selecting Edit from the menu or by double clicking
on it. Use Save button after configuration changes.

64 Chapter 6. Agent management

NetXMS Administrator Guide, Release 5.2.0

Policies are automatically deployed to nodes after creation/modification or when a template is applied to a node. When
configuration policy is deleted or template is removed from a node, the policy is automatically undeployed from node.
Policies get deployed / undeployed:

• On node configuration poll.
• When list of Agent Policies is closed in the management client. If a node is down at that moment, next attempt
will happen on configuration poll.

• When template is applied or removed from a node. If a node is down at that moment, next attempt will
happen on configuration poll.

Installed policy configurations are stored as additional files under agent DataDirectory. List of applied policies is stored
in agent local database.
If agent discovers for a record in local database, that policy file is missing, it will delete the record from database.
When performing deployment, server checks information in agent’s database with it’s database and issues necessary com-
mands.

6.4.1 Agent configuration policy
Agent configuration policy provides option to populate agent configuration with additional parts. Main agent configuration
is merged with additional rules from policy. Using policy for configuration file maintenance has advantages that configu-
ration is edited in centralized way and gives granular control on the configuration that each node gets. More information
about different agent configuration options can be found in above chapters.
It is possible to use the same parameters and format as in any NetXMS agent configuration file (key=value format or XML
format).
Example:

MasterServer=127.0.0.1

SubAgent=netsvc.nsm

SubAgent=dbquery.nsm

SubAgent=filemgr.nsm

[DBQUERY]

Database=id=myDB;driver=mysql.ddr;server=127.0.0.1;login=netxms;password=xxxxx;

↪→dbname=netxms

Query=dbquery1:myDB:60:SELECT name FROM images

ConfigurableQuery=dbquery2:myDB:Comment in param :SELECT name FROM images WHERE name␣

↪→like ?

ConfigurableQuery=byID:myDB:Comment in param :SELECT name FROM users WHERE id=?

[filemgr]

RootFolder=/

6.4. Agent Policies 65

NetXMS Administrator Guide, Release 5.2.0

<config>

<core>

<!-- there can be added comment -->

<MasterServers>127.0.0.1</MasterServers>

<SubAgent>netsvc.nsm</SubAgent>

<SubAgent>dbquery.nsm</SubAgent>

<SubAgent>filemgr.nsm</SubAgent>

</core>

<DBQUERY>

<Database>id=myDB;driver=mysql.ddr;server=127.0.0.1;login=netxms;password=xxxxx;

↪→dbname=netxms</Database>

<Query>dbquery1:myDB:60:SELECT name FROM images</Query>

<ConfigurableQuery>dbquery2:myDB:Comment in param :SELECT name FROM images WHERE␣

↪→name like ?</ConfigurableQuery>

<ConfigurableQuery>byID:myDB:Comment in param :SELECT name FROM users WHERE id=?</

↪→ConfigurableQuery>

</DBQUERY>

<filemgr>

<RootFolder>/</RootFolder>

</filemgr>

</config>

Example:

Agent should be manually restarted to apply the configuration after the configuration policy is deployed or undeployed to
node.

6.4.2 Log parser policy
Information about log parser format and usage available in Log monitoring chapter.
Log parser configuration is applied right after log parser policy is deployed or undeployed to node - no agent restart is
required.

66 Chapter 6. Agent management

NetXMS Administrator Guide, Release 5.2.0

6.4.3 File delivery policy
File delivery policy is created to automatically upload files from server to agents.
Firstly, root folder or folders should be created - folders with the full path to location where uploadable file(s) and folder
structure should be placed. After folder structure is created, files can be added to this structure. On policy apply folders
will be created, if possible, and files will be uploaded.
In file and folder names the following macros can be used:

• Environment variables as %{ENV_VAR_NAME}
• strftime(3C) macros
• Text inside ` braces will be executed as a command and first line of output will be taken

Example:

Note

File delivery policy uses File manager to upload files so filemgr subagent should be loaded and root folders should be
defined to provide write access to folders.
For Windows there is the following access rights conversion: Read is translated to FILE_GENERIC_READ, write
to FILE_GENERIC_WRITE and execute to FILE_GENERIC_EXECUTE. Other are translated as Windows group
Everyone access rights.

6.4.4 User support application policy

6.5 Agent registration
Two ways of agent-server communication are available. Standard one is when server initializes connection to agent, the
second one is when tunnel is used and agent initialize connection to server.

6.5.1 Server to agent connection
There are few ways to register agent:

1. To enter it manually by creating a node
2. Run the network discovery and enter the range of IP addresses.

6.5. Agent registration 67

http://www.unix.com/man-page/opensolaris/3c/strftime/

NetXMS Administrator Guide, Release 5.2.0

3. Register agent on management server nxagentd -r <addr>, where <addr> is the IP address of server. To
register agents using this option EnableAgentRegistration server configuration parameter should be set
to 1.

6.5.2 Agent to server connection
This connection requires certificate configuration on server side. More about required actions can be found in Server
configuration for Agent to Server connection / Tunnel connection. Server address to which the agent should connect is
specified in agent configuration file. There are two options:

ServerConnection parameter
ServerConnection parameter set in agentd.conf file to server DNS or server IP address. It’s also possible to specify
port number separated by colon, e.g.:

ServerConnection=monitoring.example.com

ServerConnection=192.168.77.77:1234

ServerConnection section
[ServerConnection] section is set in agentd.conf. This allows to specify additional parameters, e.g.:

[ServerConnection]

Hostname=192.168.77.77

Port=4703

CertificateFile=/etc/cert/agent_certificate.crt

ServerCertificateFingerprint=E6:5A:5D:37:22......FC:EF:EA:4B:22

The following parameters are supported in ServerConnection section:

Parameter Description
Hostname Server DNS or server IP address
Port Port number
CertificateId Id of Certificate in Certificate Store (Windows only). E.g.: template:1.5.3.

76.23.45.6.23.4235.56234.234

CertificateFile Agent certificate file.
Password Certificate password
ServerCertificateFingerprint Fingerprint to verify server certificate. Setting this parameter forces verification

of server certificate.

Using CertificateId or CertificateFile allows to provide agent certificate manually, not by auto-generation by
NetXMS server.
It is possible to have several ServerConnection parameters or sections in the config, in this case agent will establish
tunnel connection to multiple servers.
In addition to ServerConnection it’s necessary to set MasterServers, ControlServers or Servers parameter
to configure what access rights server has to this agent.
Agent can validate certificate chain, when connecting to server. This is configured in agent configuration file, e.g.:

TrustedRootCertificate=/etc/cert/root_cert.crt

TrustedRootCertificate=/etc/cert/root_certs

VerifyServerCertificate=yes

68 Chapter 6. Agent management

NetXMS Administrator Guide, Release 5.2.0

TrustedRootCertificate can point to either certificate file or a folder with certificates. Several TrustedRootCer-
tificate parameters can be specified. For Windows system agent loads certificates from Certificate Store. For non-
Windows systems a number of default certificate locations are automatically loaded by agent:

Path OS where this path is used
/etc/ssl/certs Ubuntu, Debian, and many other Linux distros
/usr/local/share/certs FreeBSD
/etc/pki/tls/certs Fedora/RHEL
/etc/openssl/certs NetBSD
/var/ssl/certs AIX

If ServerCertificateFingerprint is specified for a server, server certificate is always verified, disregarding the
VerifyServerCertificate value.

Agent registration on server
Right after agent start it will try to connect to the server. On first connect node will be shown in Agent Tunnels.
There are few ways to register agent:

1. To enter it manually by creating a node and then binding tunnel to already created node.
2. Create node from Agent Tunnels view by selecting one or more tunnels and selecting Create node and bind…

menu item.

Debugging
In case of errors enable server debug for “agent.tunnel” and “crypto.cert” to level 4 and agent log debug for “tunnel” and
“crypto.cert” to level 4. Check for “SYS_TUNNEL_SETUP_ERROR” events on management node.

6.6 Security
6.6.1 Message encryption in server to agent communication
Server encryption policy is configured in Server Configuration view by selecting one of 4 options for DefaultEncryption-
Policy parameter. Default Policy is 2.
Policy types:

• 0 - Forbid encryption. Will communicate with agents only using unencrypted messages. If agent force encryption
(RequireEncryption agent configuration parameter is set to yes), server will not accept connection with this agent.

• 1 - Allow encryption. Will communicate with agents using unencrypted messages if encryption is not enforced by
setting RequireEncryption agent configuration parameter to yes or by selecting Force encryption option in Commu-
nication properties of node object.

• 2 - Encryption preferred. Will communicate with agents using encryption. In case if agent does not support
encryption will use unencrypted communication.

• 3 - Encryption required. Will communicate with agent using encryption. In case if agent does not support encryp-
tion will not establish connection.

6.6. Security 69

NetXMS Administrator Guide, Release 5.2.0

Fig. 1: Force encryption option for node.

6.6.2 Security in agent to server connection
Agent to server connection uses TLS protocol to ensure communication security. Server has root certificate, that is used
to issue public certificate for agent. Server issues certificate to node when user manually binds tunnel to a node in Agent
Tunnels, or node is bind automatically (whenAgentTunnels.UnboundTunnelTimeoutAction server configuration parameter
is set to Bind tunnel to existing node or Bind tunnel to existing node or create a new node). If required, this process can
also be automated by NXShell. More information: NXShell examples, Latest Javadoc.

6.6.3 Server access levels
Depending on how server’s IP address (or domain name) is added to in nxagentd.conf, it will have different access level.
It is preferred to use MasterServers. There are 3 levels of access for an agent:

1. MasterServers - full access.
2. ControlServers - can read data and execute predefined actions and make screenshots
3. Servers - read only access. (Is default for tunneled agent connection if other server level is not defined)

In case if server IP is not listed in one of this parameters agent will not enable connection with server in server to agent
connection or will set access level to Servers if tunnel connection is used.
Detailed list of functionality available to above mentioned access levels is the following:

70 Chapter 6. Agent management

https://wiki.netxms.org/wiki/Using_nxshell_to_automate_bulk_operations
https://www.netxms.org/documentation/javadoc/latest/

NetXMS Administrator Guide, Release 5.2.0

Functionality Mas-
terServers

Con-
trolServers

Servers

Read metrics, lists and table metrics X X X
Web service, modbus, SNMP trap, syslog, tftp proxy operation (also requires en-
abling specific proxy type in agent configuration file)

X X X

Execute actions defined in agent configuration files or configuration policies X X
Take screenshots X X
Edit agent main configuration file X
Remote agent upgrade X
Install software packages X
Deploy/undeploy agent policies X
File manager – all write operations, e.g. file or folder creation, deletion, etc. (also
requires enabling file manager and specifying root folder in agent configuration
file)

X

Sending notifications via user support application X
Running commands inside ` braces for File.* metrics and in log file monitoring X
Use of File.Content() metric X
SNMP.ScanAddressRange() and TCP.ScanAddressRange() lists (also requires
EnableProxy = yes in agent configuration file)

X

Agent, SNMP and TCP proxy operation (also requires enabling specific proxy
type in agent configuration file)

X

6.6.4 Shared secret
Shared secret is another level of server verification. By default authentication is disabled.
To enable Shared Secret verification on agent set RequireAuthentication agent configuration parameter to yes. In Shared-
Secret agent configuration parameter set password what should be used for authentication.
If authentication for agent is enabled, then while connection agent requested shared secret from the server. Server check
if password was set for this specific node in Shared secret field in communication properties of node. In case if there is
no shared secret server sends content of AgentDefaultSharedSecret server configuration variable as shared secret.

6.6. Security 71

NetXMS Administrator Guide, Release 5.2.0

Fig. 2: Shared secret field in node communication properties.

In case shared secrets are not identical connection is not established.

6.6.5 Password encryption
When it is required to write password or Shared Secret in agent configuration file, there is possibility to encrypt it. All
passwords can be encrypted with help of nxencpasswd command line tool and added in configuration file in encrypted
way.

6.7 Subagents
Subagents are used to extend agent functionality. NetXMS subagent are libraries that are loaded by agent.
On Linux systems, where agent is installed from packages, some subagents are provided in separate packages (e.g.
netxms-agent-mqtt) to avoid pulling unnecessary dependencies on systems where specific functionality is not needed.
Subagents that do not require dependencies are shipped in netxms-agent package.
On Windows all available subagents are shipped in agent installer.
Subagents are enabled by adding corresponding line in agent configuration file (for example: SubAgent=dbquery).
Below is list of available NetXMS subagents:

• Bind9
• Asterisk

• DB2

• Database Query (dbquery)

• DS18x20

• File Manager (filemgr)

72 Chapter 6. Agent management

NetXMS Administrator Guide, Release 5.2.0

• gps
• Informix

• Java

• Linux (automatically loaded on Linux systems)
• Log file and Windows event log monitoring (logwatch)

• lm-sensors

• MongoDB

• MQTT

• MySQL

• Network Service Check (netSVC)

• Oracle

• ICMP Ping (ping)
• Postgres

• Raspberry Pi

• sms
• ssh

• UPS

• Windows event log syncronization (wineventsync)

• WinNT (Automatically loaded on Windows systems)
• Windows Performance (winperf)
• WMI

• XEN

6.7.1 Java subagent
This is a special type of subagent, that allows to load Java plugins (subagents written using Java language). Java subagent
does not provide any functionality by itself.
There are several configuration parameters that are supported by Java subagent. None of them is mandatory.

Parameter Description
Jvm Path to JVM. System default is used if not set.
Classpath This parameter is added to java CLASSPATH.
Plugin This parameter defines plugin that should be loaded. Can be used multiple times.

Configuration example:

MasterServers = netxms.demo

SubAgent=java.nsm

[JAVA]

Jvm = /path/to/jvm

(continues on next page)

6.7. Subagents 73

NetXMS Administrator Guide, Release 5.2.0

(continued from previous page)
Classpath = /path/to/user/classes

Plugin = bind9.jar

Java plugins
List of available java plugins:

• JMX
• Bind9

6.7.2 Load of subagent as separate process
Load of subagent as separate process can be used in case it is necessary to load agent and subagent under different users.
It can be done by adding ExternalSubagent parameter with unique ID that will represent connection name between
agent and subagent. Create second configuration file for this subagent and add there ExternalMasterAgent parameter
with same ID and run instance of nxagentdwith this config. Now external subagent will communicate with master agent
using Named Pipe. Only master agent will communicate with server.

6.8 Agent Proxy node configuration
In case it is required to monitor nodes behind firewall, it can be configured access to one of subnet nodes and used this
node as a proxy node for others.
Proxy node can be set during node creation or in Communications tab of node properties. To configure proxy node select
node in object selector NetXMS Agent Proxy.

74 Chapter 6. Agent management

NetXMS Administrator Guide, Release 5.2.0

6.8. Agent Proxy node configuration 75

NetXMS Administrator Guide, Release 5.2.0

6.8.1 Agent configuration
To enable NetXMS Agent proxy “EnableProxy” agent configuration parameter should be set to yes.

6.9 Agent External Metrics
Other option to define new metric that can be collected from node is to use ExternalMet-

ric/ExternalMetricShellExec, or ExternalList, or ExternalMetricProvider configuration parameters
to define a command that will be executed on a node and it’s output will be provided as a metric. This functionality
provides flexibility to create your own metrics, lists or table metrics.
New metrics will be visible in the Available metrics list only after agent restart (agent reads its configuration files only once
on start) and subsequent configuration poll, so to force it’s appearance run Configuration poll manually after agent restart.

Note

On Windows platforms UTF-8 encoding should be returned in External Metrics.

6.9.1 ExternalMetric/ExternalMetricShellExec
ExternalMetric defines name of the metric and command that is executed synchronously when this metric is requested
by the server. Parameters from DCI configuration can be provided, these will be available as $1, $2, $3…, $9 variables.
To accept parameters metric name should contain “(*)” symbols after name. Only first line of command output will be
given as a result of execution (metric’s value).
ExternalMetricShellExec has same meaning as ExternalMetric and behaves identically on non-Windows sys-
tems. On Windows systems ExternalMetric executes specified command using system process execution API’s Cre-
ateProcess() function. It will search in PATH, but the command should be with file extension, e.g. command.exe.
ExternalMetricShellExec will use shell to execute specified command on Windows.
To add multiple metrics, you should use multiple ExternalMetric/ExternalMetricShellExec entries.

76 Chapter 6. Agent management

NetXMS Administrator Guide, Release 5.2.0

As these commands are executed synchronously, long-executing commands may cause timeout. There are two timeouts
- one on the agent side (controlled by ExternalMetricTimeout in agent’s configuration file) and generic timeout for
all requests to agent (controlled by AgentCommandTimeout in server’s configuration file). It’s strongly not recommended
to increase server timeout to more then a few seconds because this may lead to performance issues due to poller threads
spending too much time on timeouts. ExternalMetricProvider can be used to handle long-executing commands.

Example

Without DCI parameters

ExternalMetric=Name:command

ExternalMetricShellExec=Name:command

With DCI parameters

ExternalMetric=Name(*):command $1 $2

ExternalMetricShellExec=Name(*):command $1 $2

For each metric configured two agent metrics are provided - one is Name as specified in ExternalMet-

ric/ExternalMetricShellExec which provides output of the command (first line only), the other is Name.

ExitCode that provides exit code of the executed command.

Real example

ExternalMetric = Test:echo test

ExternalMetric = LineCount(*):cat $1 | wc -l

> nxget localhost Test

test

> nxget localhost 'LineCount(somefile.txt)'

42

> nxget localhost 'LineCount(somefile.txt).ExitCode'

0

6.9.2 ExternalList
ExternalList defines name of the list metric and command that is executed synchronously when this metric is requested
by server. Parameters from DCI configuration can be provided, these will be available as $1, $2, $3…, $9 variables. To
accept parameters metric name should contain “(*)” symbols after name. Lines of the list are separated by new line
character.

Example

Without DCI parameters

ExternalList=Name:command

With DCI parameters

ExternalList=Name(*):command $1 $2

6.9.3 ExternalMetricProvider
ExternalMetricProvider defines command (script) and execution interval in seconds. Defined script will be executed
regularly and agent will cache list of metrics along with their values. When server will request one of provided metrics,
it’s value will be read from the agent cache. Main purpose is to provide data from long-running processes, or retrieve
multiple values by running a command only once.

6.9. Agent External Metrics 77

NetXMS Administrator Guide, Release 5.2.0

Timeout in milliseconds for command execution is defined by ExternalMetricProviderTimeout parameter in agent config-
uration file.
Script should print one or more “Metric=Value” pairs to standard output. Multiple pairs should be separated by new line.
If metric takes a parameter, it should be included in “Metric(…)”.
Example of the script:

#!/bin/sh

echo 'Metric1=Value1'

echo 'Metric2=Value2'

echo 'MetricWithParams(parameter)=Value3'

echo 'MetricWithParams(another_parameter)=Value4'

Example of agent configuration:

#Example

ExternalMetricProvider=PATH_TO_PROVIDER_SCRIPT:EXECUTION_INTERVAL_IN_SECONDS

#Example (run /tmp/test.sh every 5 seconds)

ExternalMetricProvider=/tmp/test.sh:5

6.9.4 ExternalTable
ExternalTable defines table that is provided by agent and how it can be obtained. Table can be collected synchronously
when requested by the server or regularly in the background (in this case server gets cached data). Second option is
useful when command for table creation is taking a long time to avoid timeout. To collect table in the background
“PollingInterval” configuration option is required.
Timeout in milliseconds for background operation is defined by ExternalMetricProviderTimeout parameter in agent con-
figuration file.
Each table line is separated with new line symbol. First line in returned text should contain name of columns, subsequent
lines contain table data. Parameters from DCI configuration can be provided, these will be available like $1, $2, $3…,
$9 variables. To accept parameters metric name should contain (*) symbols after name.

78 Chapter 6. Agent management

NetXMS Administrator Guide, Release 5.2.0

Name Re-
quired

Description

Command Yes Result of this command execution will be used as a value for table DCI. First row
is used as column names.

Separator No Symbol that will be used as a separator for columns. If separator is not specified,
default value of , is used.

Note

Separator supports special macros for separator:
• \n - \n
• \r - \r
• \s - space
• \t - tab
• \u115 - unicode character number 115

InstanceColumns No Comma separated instance column list.

Note

Instance column should contain unique identifier for each table
row. If several instance columns are used, then combination of
these columns should be unique. This is necessary for building
graphs and for correct threshold violation event generation. Row
number is used if instance column is not set.

Description No Table DCI description that will be shown in table DCI selector.
PollingInterval No Interval that is used to poll table in the background. Table will be collected syn-

chronously (per request) if this parameter is omitted.
ColumnType No Data type of the column. Is set in format columnName:dataTypeName. If column

does not have type int32 is used by default.
Possible options:

• int32
• uint32
• int64
• uint64
• string
• float
• counter32
• counter64

Example

Simple example

[ExternalTable/test]

Command = echo 'col1;col2;col3\na;b;c'

Separator = ;

Without DCI parameters

[ExternalTable/dciName]

Command = command

Separator = ;
(continues on next page)

6.9. Agent External Metrics 79

NetXMS Administrator Guide, Release 5.2.0

(continued from previous page)
InstanceColumns = columnName,columnName2

Description = description

PollingInterval = 60

ColumnType = columnName:string

ColumnType = columnName3:string

With DCI parameters

[ExternalTable/dciName(*)]

Command = cat /folder/with/my/files/$1

Old configuration format

ExternalTable=dciName::command

ExternalTable=dciName:instanceColumns=columnName;description=description;

↪→separator=|:command

ExternalTable=dciName(*):instanceColumns=columnName;description=description;

↪→separator=|:command $1 $2

#Old configuration format with background polling

ExternalTable=dciName:instanceColumns=columnName;description=description;

↪→separator=|:command;backgroundPolling=yes;pollingInterval=60

Note

backgroundPolling configuration should be set to true or yes in order to use polling interval with old configu-
ration format.

6.10 Agent Actions
For security reasons actions that can be executed on agent first are defined in agent configuration file and only then can
be used by users. This excludes that an unauthorized user can access system data through an arbitrary entered command.
Only users with access to the agent configuration file editing can define executed commands.
There are 2 options to define action:

1. Action - usual action definition. On Windows platform system process execution API’s CreateProcess() is used to
run the command, it will search in PATH, but the command should be with file extension, e.g. command.exe.

2. ActionShellExec - Same as Action, but on the Windows platform agent will use shell to execute command instead
of normal process creation. There is no difference between Action and ActionShellExec on UNIX platforms.

Both versions accept parameters that will be available like $1, $2, $3…, $9 variables.
After action is defined it can be used in the object tools - agent action or in actions - action execution on remote node.
Action should be defined in main section of agent configuration file.

Example

Action=Name:command

Action=Name:command $1 $2

Action=cleanLogs:rm /opt/netxms/log/*

Action=ping:ping $1

ActionShellExec=listFiles:dir $1

80 Chapter 6. Agent management

CHAPTER

SEVEN

SERVER MANAGEMENT

7.1 Configuration file
File netxmsd.conf is a configuration file for NetXMS server. It contains information necessary for establishing database
connection, and some optional server parameters. Default location for this file is /etc/netxmsd.conf onUNIX systems
and InstalationPathetcnetxmsd.conf on Windows.
The file can contain one or more parameters in Parameter = Value form, each parameter should be on its own line.
Comments can be inserted after “#” sign.
Detailed list of parameters can be found there: Server configuration file (netxmsd.conf).
Configuration file example:

#

Sample server configuration file

#

DBDriver = mysql.ddr

DBServer = localhost

DBName = netxms_db

DBLogin = netxms

DBPassword = password

LogFile = {syslog}

7.2 Server configuration for Agent to Server connection / Tunnel con-
nection

NetXMS provides option to establish connection from agent to server. This requires additional configuration on server
and on agent sides. This chapter describes server side configuration. Agent side configuration can be found in Agent to
server connection. Agent to server connection is a TLS tunnel carrying virtual server to agent connections.
Server configuration can be separated into two parts: initial configuration (certificate generation and configuration) and
node binding.
Server provide option to configure automatic options on new unbound tunnel connection. Once new unbound tun-
nel connection comes to server - idle timeout counter starts for this connection. If nothing done while AgentTun-
nels.UnboundTunnelTimeout time, automatic action selected in AgentTunnels.UnboundTunnelTimeoutAction will be ex-
ecuted.
There are 4 types of actions, that can be done automatically:

1. Reset tunnel - close tunnel. It will be automatically reopened again by agent. This process will update infor-
mation on server in case of change on agent.

81

NetXMS Administrator Guide, Release 5.2.0

2. Generate event - generates event SYS_UNBOUND_TUNNEL, that later can be used for administrator notifi-
cation or any other automatic action (see Event processing).

3. Bind tunnel to existing node - will try to find correct node and bind tunnel to it. Node matching rules will be
described further.

4. Bind tunnel to existing node or create new node - will try to find correct node and bind tunnel to it. If node is
not found new node will be created under container mentioned in AgentTunnels.NewNodesContainer server
configuration parameter. Node matching rules will be described further.

Node is matched for binding if:
1. Zone UIN given by agent (is configured in agent configuration under ZoneUIN) match to node zone id
2. IP given by agent match to node’s IP address
3. Hostname or FQDN match with node name

7.2.1 Initial configuration
Certificate should be issued and added to the server configuration. This certificate will be used to issue public certificates
for agents. Certificate usage should allow certificate signing. Certificates should be in PEM format. Server key should be
added to the certificate file or should be provided as a separate configuration parameter.
Certificate can be obtained in two ways:

1. By sending CSR request to your CA
2. Create self signed certificate

Settings in server configuration file:

Parameter Description Required
TrustedCertificate Certificate issued by certificate authority or

self-signed CA certificate. If certificate
chain for server certificate is longer, all up-
per level certificates should be added to con-
figuration file by adding multiple Trusted-
Certificate entries.

Yes

ServerCertificate Certificate issued by certificate authority.
This certificate is used to issue agent cer-
tificates. ServerCertificate parameter also
implies that this certificate is trusted by the
server when checking agent certificate valid-
ity.

Yes

ServerCertificatePassword Server certificate password. Can be omitted if certificate does not
use password.

ServerCertificateKey Server certificate private key. Can be omitted if key is included in
server certificate file.

There are additional option to configure separate certificates for agent certificate issuing and for connection. If there is no
need to issue certificates (they are externally provisioned) only connection certificate is required.
Connection certificate settings: TunnelCertificate, TunnelCertificateKey, TunnelCertificatePassword Issuing certificate
settings: InternalCACertificate, InternalCACertificateKey, InternalCACertificatePassword

82 Chapter 7. Server management

NetXMS Administrator Guide, Release 5.2.0

Note

If ServerCertificate settings are set it will be fall back option for TunnelCertificate and InternalCACer-
tificate

Server configuration variable settings:

Parameter Description Default
AgentTun-
nels.UnboundTunnelTimeoutAction

Action that will be executed after idle time-
out. Actions are described here: Server con-
figuration for Agent to Server connection /
Tunnel connection

Reset tunnel

AgentTun-
nels.UnboundTunnelTimeout

Tunnel idle timeout in seconds, that will be
waited till automatic action execution.

3600

AgentTun-
nels.NewNodesContainer

Container name where newly created nodes
will accrue. You can use -> character pair
to create subtree (like Office->Tunnel).
If no container is set nodes will appear under
Entire Network

Self signed certificate sample
This manual describes only simplest option: self signed certificate creation. It does not contain any information about file
access right assignment.

1. Create private root key (add -aes256 parameter to use password):
openssl genrsa -out rootCA.key 2048

2. Create self signed root certificate:
openssl req -x509 -new -key rootCA.key -days 10000 -out rootCA.crt

3. Create server key (add -aes256 parameter to use password)
openssl genrsa -out server.key 2048

4. Create openssl.conf file. Content of file (dn section should be changed accordingly):

[req]

distinguished_name = dn

req_extensions = v3_ca

prompt = no

[dn]

countryName = LV

stateOrProvinceName = Riga

localityName = Riga

organizationName = netxms.org

commonName = Monitoring Server

[v3_ca]

basicConstraints = CA:TRUE

5. Create server certificate request
openssl req -new -key server.key -out server.csr -config openssl.conf

7.2. Server configuration for Agent to Server connection / Tunnel connection 83

NetXMS Administrator Guide, Release 5.2.0

6. Sign server certificate with root CA certificate
openssl x509 -req -in server.csr -CA rootCA.crt -CAkey rootCA.key -CAcreateserial

-out server.crt -days 5000 -extfile openssl.conf -extensions v3_ca

Add newly created certificates to server configuration (netxmsd.conf file).

TrustedCertificate = /opt/netxms/key/rootCA.crt

ServerCertificate = /opt/netxms/key/server.crt

ServerCertificateKey = /opt/netxms/key/server.key

7.2.2 Reissuing server certificate
When server certificate validity term is coming to an end or there are some security considerations, server certificate can
be reissued. There are two options - server certificate can be reissued using same root CA or, if you use self-signed root
CA, it can also be reissued.
To perform a smooth transition from old to new server certificate, old certificates can be specified as TrustedCertificate in
server configuration file. In this case agents with certificates issued based on the old server certificate would still be able
to connect, but new agent certificates will be issued based on the new server certificate.
After all agents will receive agent certificate signed by the new server certificate, old certificates can be removed from
server configuration file.
Server configuration example if self-signed root CA was reissued:

~~~ Old root certificate ~~~

TrustedCertificate = /opt/netxms/key/old_rootCA.crt

~~~ Old server certificate ~~~

TrustedCertificate = /opt/netxms/key/old_server_certificate.crt

~~~ New root certificate ~~~

TrustedCertificate = /opt/netxms/key/rootCA.crt

~~~ New server certificate ~~~

ServerCertificate = /opt/netxms/key/server.crt

ServerCertificateKey = /opt/netxms/key/server.key

7.2.3 Node binding
Once server certificates are configured and agent is correctly configured (ServerConnection parameter set in agentd.conf)
requests for agent to server connection will be shown in Agent Tunnel Manager view.

Fig. 1: Agent Tunnel Manager

84 Chapter 7. Server management

NetXMS Administrator Guide, Release 5.2.0

User should manually accept them by binding to existing node Bind… or by creating new one Create node and bind….
Once node will be bound - it’s state in Agent Tunnel Manager view will be changed to Bound.

Fig. 2: Agent Tunnel Manager

7.3 Configuration variables
These variables are stored in database and can be changed using Server Configuration Editor view accessing it Configura-
tion‣Server Configuration or with help of nxdbmgr`(example: :code:`nxdbmgr set <name> <value>).

Fig. 3: Server Configuration

Detailed description of each configuration can be found there: Server configuration parameters. Please note that changes
to most of the settings will take effect only after server restart.

7.4 Synchronization between servers
NetXMS does not provide horizontal scalability for server. But there is option to exchange with events between servers.
Information about configuration can be found there: Forward event. Event forward does not work with zones.

7.3. Configuration variables 85

NetXMS Administrator Guide, Release 5.2.0

7.5 netxmsd commandline options

Command Description
-e Run database check on startup
-c <file> Set non-default configuration file Default is {search}
-d Run as daemon/service
-D <level> Set debug level (valid levels are 0..9)
-h Display help and exit
-p <file> Specify pid file.
-q Disable interactive console
-v Display version and exit

7.6 Server debug console
Server debug console can be opened in Management Client. It can be found in Tools -> Server Console.
It can be used to check debug messages or to execute one of server commands like “ldap sync”.

86 Chapter 7. Server management

NetXMS Administrator Guide, Release 5.2.0

7.6.1 Server commands

Command Description
debug [<level>|off] Set debug level (valid range is 0..9)
down Shutdown NetXMS server
exec <script> [<params>] Executes NXSL script from script library
exit Exit from remote session
kill <session> Kill client session
get <variable> Get value of server configuration variable
help Display this help
ldapsync Synchronize ldap users with local user database
poll <type> <node> Initiate node poll
raise <exception> Raise exception
set <variable> <value> Set value of server configuration variable
show components <node> Show physical components of given node
show dbcp Show active sessions in database connection pool
show fdb <node> Show forwarding database for node
show flags Show internal server flags
show index <index> Show internal index
show modules Show loaded server modules
show objects Dump network objects to screen
show pollers Show poller threads state information
show queues Show internal queues statistics
show routing-table <node> Show cached routing table for node
show sessions Show active client sessions
show stats Show server statistics
show topology <node> Collect and show link layer topology for node
show users Show users
show vlans <node> Show cached VLAN information for node
show watchdog Display watchdog information
trace <node1> <node2> Show network path trace between two nodes

7.7 Configuring self-monitoring

7.8 Database connection pool

7.9 ICMP proxy
To used ICMP proxy Ping subagent should be loaded for ICMP proxy node.
This proxy is used to check node availability when Zones are used.

7.7. Configuring self-monitoring 87

NetXMS Administrator Guide, Release 5.2.0

88 Chapter 7. Server management

CHAPTER

EIGHT

SNMP

8.1 SNMP Drivers
Various SNMP devices might require special measures to get information, e.g. some devices provide additional informa-
tion for interfaces only under vendor OIDs, etc. To address this, NetXMS provides a concept of SNMP drivers. SNMP
driver is detected automatically.
If SNMP driver was not automatically detected, it’s possible to set it manually by specifying driver name in custom
attribute snmp.driver on a node.
Possible SNMP driver names are:

• ARUBA-SW
• AT
• BAYSTACK
• CAMBIUM-CNPILOT
• CAMBIUM-EPMP
• CATALYST-2900XL
• CATALYST-GENERIC
• CISCO-ESW
• CISCO-GENERIC
• CISCO-NEXUS
• CISCO-SB
• CISCO-WLC
• DELL-PWC
• DLINK
• EDGECORE-ESW
• ELTEX
• ERS8000
• ETHERWAN
• EXTREME
• FORTIGATE
• H3C

89

NetXMS Administrator Guide, Release 5.2.0

• HIRSCHMANN-CLASSIC
• HIRSCHMANN-HIOS
• HPE-ILO
• HPSW
• HUAWEI-SW
• IGNITENET
• JUNIPER
• MDS-ORBIT
• MIKROTIK
• MOXA-EDR
• NET-SNMP
• NETONIX
• NETSCREEN
• NTWS
• OPTIX
• PING3
• PROCURVE
• QTECH-OLT
• QTECH-SW
• RITTAL
• RUGGEDCOM
• SAF-INTEGRA-B
• SYMBOL-WS
• TB
• TELTONIKA
• TPLINK
• UBNT-AIRMAX
• UBNT-EDGESW
• WESTERSTRAND

8.2 MIB Explorer
MIB browser shows all loaded MIB configurations, and allows to run SNMP walk on a selected node nodes. Node can be
selected in browser by selecting Set node object… option in view menu or by opening MIB Explorer from node menu.

90 Chapter 8. SNMP

NetXMS Administrator Guide, Release 5.2.0

To run walk user should select line of tree from were will be requested all data. By walk will be requested all OID subtree
of selected item.
After walk is done it’s results will shown in the table below.

There are next options available for results:
• Copy result line to clipboard
• Copy name of selected line to clipboard

8.2. MIB Explorer 91

NetXMS Administrator Guide, Release 5.2.0

• Copy type of selected line to clipboard
• Copy value of selected line to clipboard
• Export selected lines to CSV
• Show selection in MIB tree
• Create DCI from selected item

8.3 SNMP Trap Configuration
In this view is configured which event will be generated on exact trap OID and which OID data will be used as event
parameter data.

In SNMP Trap mapping configuration window can be set next parameters:
• Description of mapping rule
• Trap OID or trap OID group with many subtree OIDs, matching OID will be given to event as $1 parameter
• Event that will be generated on selected Trap OID
• User Tag is special event attribute, that can be got by %u macros or as attribute of event class. This attribute can
be set there or by script.

• Parameters - OID values that will be passed to event as $2, $3, $4… parameters
In parameter configuration(Edit SNMP Trap Parameter Mapping) can be configured next things:

• Description of a parameter
• Select if parameter should be found by OID or by position in the message
• Option not to convert value to hex string. If string contains not readable symbols(symbol number less than space
symbol number) it will be automatically converted to hex string, this option is required to prevent auto conversion.

92 Chapter 8. SNMP

NetXMS Administrator Guide, Release 5.2.0

8.4 Default SNMP credentials
Default SNMP credentials can be set in Configuration ‣ SNMP Credentials. It does not matter if credentials are used for
adding nodes manually, through network discovery or with the help of agent registration - in each case SNMP Credentials
configuration value will be checked.

8.4. Default SNMP credentials 93

NetXMS Administrator Guide, Release 5.2.0

8.5 Using ifTable and ifXTable
There are 2 types of subtree that provides information about interfaces: old one ifTable and new one ifXTable. Sometimes
usage of new one creates error situations. In this situation ifXTable can be disabled. This can be done in Properties of
node in Polling. Or this configuration can be set globally by changing UseIfXTable server configuration parameter.

94 Chapter 8. SNMP

NetXMS Administrator Guide, Release 5.2.0

8.6 Configure SNMP Proxy
If there is need to monitor nodes behind firewall using SNMP, there is option to install on one of the nodes NetXMS
agent, open all required ports for this node and send SNMP request to other nodes in this subnet through installed agent.
Proxy configuration can be done wile creation of node of for already created node can be change in Communications tab
of node properties. To configure proxy node select node in object selector SNMP Proxy.

8.6. Configure SNMP Proxy 95

NetXMS Administrator Guide, Release 5.2.0

96 Chapter 8. SNMP

NetXMS Administrator Guide, Release 5.2.0

8.6.1 Agent configuration
To enable SNMP proxy “EnableSNMPProxy” parameter should be set to “yes”.

8.7 Configure SNMP Trap Proxy
It is possible to proxy SNMP traps.
In this case as a destination of traps should be set the proxy node.

8.7.1 Agent configuration
To enable trap proxy “EnableSNMPTrapProxy” parameter should be set to “yes”.
Optionally can be configured also “SNMPTrapListenAddress” and “SNMPTrapPort”. Default values can be checked
there: Master configuration file

8.7.2 Server configuration
By default traps are accepted only from known nodes. To accept all traps set “LogAllSNMPTraps” server configuration
variable to 1.
To correctly send response for SNMPv3, it should be also configured the proxy node for the sender node. It is done in
sender node properties in “Communications” tab, SNMP section.

8.8 Import MIB
MIB files (MIBs) describe structure of information transferred via SNMP. Every device can support multiple MIBs, some
of them are standard and public, other can be proprietary and vendor specific. NetXMS uses compiled MIBs to allow
you to select OID and see its description (for example when selecting SNMP data for DCI collection). You do not need
to compile new MIBs if you are OK with direct input of OID.

8.7. Configure SNMP Trap Proxy 97

NetXMS Administrator Guide, Release 5.2.0

8.8.1 Manage User MIBs
To add additional MIBs go to Configuration –> SNMP MIB files. Upload mib files with extension .mib and hit compile
button. MIB compilation log will be visible in Output tab and warnings/errors will be added to Error Log tab. Afret MIB
files are succesfully compiled all opened clients automatically dowload new version form server.

8.8.2 For versions older 5.0
Compiling MIBs

• Change suffix of your new MIB file to .txt
• Copy your MIB file to /usr/share/netxms/mibs
• Use nxmibc binary to create a new compiledMIB file from all MIBs in directory. Add parameter -z for compressed
output file.

nxmibc -d /usr/share/netxms/mibs -o /var/lib/netxms/netxms.mib

Parameters recognized by nxmibc:

98 Chapter 8. SNMP

NetXMS Administrator Guide, Release 5.2.0

nxmibc [options] source1 ... sourceN

Valid options:

-d <dir> : Include all MIB files from given directory to compilation

-o <file> : Set output file name (default is netxms.mib)

-P : Pause before exit

-s : Strip descriptions from MIB objects

-z : Compress output file

Troubleshooting
If nxmibc fails, it may be caused by syntax or import errors in your MIB. Try to check it with smilint (part of net-snmp
package) and correct any errors on level 3.

8.9 Working with the SNMP Tables
When we do SNMP walk the resulting SNMP table item OIDs consist of three parts. For the sake of our explanation, we
will mark these parts with the letters:
XXXYYYNNN, where
XXX is part that does not change—we can call it a Table base OID;YYY is part that represents different columns; NNN
is the instance part. The instance part represents rows in the table.
Now, as an example, we can imagine the table with base “.1.3.6.1.2.1.2.2.1” like the one below:

1.3.6.1.2.1.2.2.1.1 .2 .3 .4 .5 .6
.1 1 lo 24 65536 10000000
.2 2 VMware

VMXNET3 Ether-
net Controller

6 1500 4294967295 005056A5BA4D

In this table the columns are YYY numbers (that are usually single numbers in ascending order), and the rows are the
NNN number.
In this table the columns are YYY numbers (that are usually single numbers in ascending order), and the rows are the
NNN number.

Example

So, in order to get the “lo” value we should request “1.3.6.1.2.1.2.2.1.2.1”, where “1.3.6.1.2.1.2.2.1” represent XXX,
“.2” (the value in the column where “lo” is situated) represents the YYY and “.1” (the value in the row where “lo” is
situated) represents the NNN.

8.9.1 How to Create a Table
To create a table, use the table base and the column part OID (XXXYYY).
In this way, taking as the example the SNMP table shown above, “1.3.6.1.2.1.2.2.1.1” can be used as the metric for the
DCI cofniguration.

8.9. Working with the SNMP Tables 99

NetXMS Administrator Guide, Release 5.2.0

Fig. 1: General Page

Moreover, we can use any table column for configuraiton (in the example in the sentence above, we used the “.1” column,
as you rightly understood), that returns non-empty results in MIB Explorer, as they will be used to make the SNMP walk
to get all the instances.
As for the columns — each of those you’d like to monitor should then be added to the Table Columns property page.
In our case they could be:

1. Add index column 1.3.6.1.2.1.2.2.1.1
2. Add description 1.3.6.1.2.1.2.2.1.2
3. Add Physical address 1.3.6.1.2.1.2.2.1.6
4. Add MTU 1.3.6.1.2.1.2.2.1.4…

100 Chapter 8. SNMP

NetXMS Administrator Guide, Release 5.2.0

Fig. 2: Table Columns configuration

Another option to add columns is to click Query… button. Automatic table columns query is done by SNMP Walk on
Metric OID where column part is cut out.

8.9. Working with the SNMP Tables 101

NetXMS Administrator Guide, Release 5.2.0

Fig. 3: Query warning

102 Chapter 8. SNMP

NetXMS Administrator Guide, Release 5.2.0

Fig. 4: Configured table

1.3.6.1.2.1.4.35.1 .4 .5 .6 .7
.2.1.4.10.5.5.1 00 23 7D 5F 27 BB 428943151 3 1
.2.1.4.10.5.5.20 00 50 56 A5 3D 86 428943151 3 1

We can see in the table above that the instance OID can also be a string of multiple numbers with dots. In the case of a
physical address map instance, OID part will contain IP address.

8.9. Working with the SNMP Tables 103

NetXMS Administrator Guide, Release 5.2.0

Fig. 5: Physical Address MIB Explorer

Another difference with the first example can be determined by executing the SNMP walk for the table above. The device
returns values only for the columns with the OIDs “.4”, “.5”, “.6”, “.7”, “.8”.
If we do walk for the “1.3.6.1.2.1.4.35.1.1” table column, it will return us empty result. This also should be taken into
consideration when we create a table with physical addresses - only columns that return indexes can be used for the Metric
field in the DCI Table creation property page.

104 Chapter 8. SNMP

NetXMS Administrator Guide, Release 5.2.0

8.9.2 Table Thresholds and Instance Columns
When setting up table thresholds, it’s helpful to understand instance columns. An instance column is similar to a primary
key in a database — it’s the unique ID. In NetXMS, this is known as an instance- or key column. It is possible to
set multiple columns as instance columns, similar to composite keys in databases. However, if instance columns aren’t
defined, and rows change order between polling periods, it can trigger false threshold alerts. The system might register
that a different row is exceeding a threshold when, in fact, the same data is present, just in a different row. Specifying an
instance column can mitigate this confusion.

Fig. 6: Table columns configuration — editing column definition

As you see, the NetXMS table metrics are a powerful tool for collecting and managing a wealth of network data. While
they can be more complex to set up and require more storage than single with similar content, they present a great
possibility to view more complex sets of data.

8.9.3 Configuration example
In order to show how table metrics are configured in NetXMS, and how to distinguish what each part of it represents, we
will go to the MIB explorer and use one of the tables in the system.

8.9. Working with the SNMP Tables 105

NetXMS Administrator Guide, Release 5.2.0

In this picture we can see the table OID “1.3.6.1.2.1.2.2.1”. After the “1.3.6.1.2.1.2.2.1” goes “.1”, that represents the
column OID. So in OID search field we have “1.3.6.1.2.1.2.2.1.1” — the table column OID. And as a result of the MIB
walk for the given OID we get 2 instances “1.3.6.1.2.1.2.2.1.1.1” and “1.3.6.1.2.1.2.2.1.1.2”.

106 Chapter 8. SNMP

NetXMS Administrator Guide, Release 5.2.0

We can make the MIB walk for another table column “1.3.6.1.2.1.2.2.1.2” and get the same two instances, just for
another column: “1.3.6.1.2.1.2.2.1.2.1” and “1.3.6.1.2.1.2.2.1.2.2”. In this way we know now, that the table base id is
“1.3.6.1.2.1.2.2.1.2”.
To configure this table we can use any table column, that via aMIBwalk will return the instances like: “1.3.6.1.2.1.2.2.1.1”
or “1.3.6.1.2.1.2.2.1.2”. Let’s use “1.3.6.1.2.1.2.2.1.1”.

8.9. Working with the SNMP Tables 107

NetXMS Administrator Guide, Release 5.2.0

Fig. 7: General Page

Press Apply and Close button to apply changes and open configuration again (To update DCI configuration). Than let’s go
to the Table Column configuration property page and do query. It will add all the columns to the table list.

108 Chapter 8. SNMP

NetXMS Administrator Guide, Release 5.2.0

Fig. 8: The query result of the table columns

Now we have table with all the columns. Columns can be renamed by a user afterwards, as necessary. What we are
missing here is an instance column. Our instance column will be the ifIndex column.

8.9. Working with the SNMP Tables 109

NetXMS Administrator Guide, Release 5.2.0

Fig. 9: Table column configuration — renaming columns and editing their definition

As a result we will get the table below:
As we can see, the column ipPhysAddress shows nonsense. The column contains the hexdecimal string, but we try showing
it as a regular string.
Let’s go back to the table configuration and adjust it by setting “Convert SNMP value to hexdecimal string” option for a
column.

110 Chapter 8. SNMP

NetXMS Administrator Guide, Release 5.2.0

Fig. 10: Table column configuration — renaming columns and editing their definition

You can also adjust some column names for more clarity.

8.9. Working with the SNMP Tables 111

NetXMS Administrator Guide, Release 5.2.0

The end result will look like the table below:

112 Chapter 8. SNMP

NetXMS Administrator Guide, Release 5.2.0

8.9.4 Additional tips
If two tables share the same instances, they can be shown in one table — as a process table for ESX:

8.9. Working with the SNMP Tables 113

NetXMS Administrator Guide, Release 5.2.0

114 Chapter 8. SNMP

CHAPTER

NINE

USER MANAGEMENT

9.1 Introduction
NetXMS has its own user database. All NetXMS user accounts are stored in the backend SQL database. Each account
has its own unique login name and identifier. The account may also have a password.

9.2 Terms and Definitions
9.2.1 Users
NetXMS has the following attributes for users:

• Unique identifier
• Unique login name
• Full name
• Email
• Phone number
• Description
• System Access Rights configuration
• Authentication method configuration
• TOTP configuration
• Password
• Certificate

Not all attributes are mandatory.

Superuser
NetXMS has a built-in superuser account with ID 0, which always has full access to the system. The default login name
for the superuser account is system. By default this account is disabled. The superuser account can be renamed or
disabled/enabled, but cannot be deleted.
The system user can be used to correct access rights to objects that exists, but to which no other users have access to.

115

NetXMS Administrator Guide, Release 5.2.0

9.2.2 Groups
Each user can be a member of several groups. Groups are the preferred way to organize access permissions. You should
always grant permission to groups instead of using individual users. That way you will get a much shorter access control
list which is easier to handle. Access rights from multiple groups are summarized to calculate effective user access rights.
Other groups can also be added as group members, in this case, the user access rights will be calculated by summarizing
the access rights from all the groups in the path to the user.

Everyone Group
NetXMS has a built-in virtual group called Everyone. This group always contains all users in the system. It cannot be
deleted, and its member list cannot be edited.

9.2.3 System Access Rights
NetXMS has two types of access rights: system access rights as described in this chapter and object access rights.
System access rights used to grant access to system-wide configuration (like Event processing) and functions (like agent
registration).
The following system access rights can be granted:

Access Right Description
Access server console Allow user to access the server debug console. Server debug console
Configure event templates Allow user to add, edit and delete event templates. Event processing
Configure object tools Allow user to configure object tools. Object Tools
Configure server actions Allow user to configure server actions. Event processing
Configure SNMP traps Allow user to configure SNMP trap mapping.
Control user sessions Allow user to see active user sessions and forcefully terminate them. (Not yet imple-

mented)
Edit event processing pol-
icy

Allow user to edit Event Processing Policy. Event processing

Edit server configuration
variables

Allow user to edit server configuration variables.

External tool integration
account

Allow external software user authentication using NetXMS user accounts via Web
API/Rest API.

Import configuration Allow user to import configuration from file. Dashboard import is not restricted by this
access right.

Initiate TCP proxy sessions Allow to use functionality that allows to forward TCP connections inside the connection
between NetXMS server and agent.

Login as mobile device Allows user to login via mobile application.
Manage agent configura-
tions

Allow user to create, edit and delete agent configurations stored on the server. Agent
configuration options from server

Manage all scheduled tasks Allow user to create, edit and delete all Scheduled tasks, including system ones.
Manage DCI summary ta-
ble

Allows user to manage DCI summary table. Summary table

Manage geographical areas Allows user to manage geographical areas
Manage image library Allows user to manage image library. Image library
Manage mapping tables Allows user to create, edit and delete mapping tables.
Manage object categories Allows user to create, edit and delete object categories.
Manage object queries Allows user to create, edit and delete saved object queries.
Manage own scheduled
tasks

Allow user to create new and modify Scheduled tasks created by the user.

continues on next page

116 Chapter 9. User management

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Access Right Description
Manage packages Allow user to install, remove, and deploy server agent packages. Centralized agent up-

grade
Manage persistent storage Allows user to create, edit and delete persistent storage records
Manage script library Allows user to add, edit, rename and delete scripts in script library.
Manage server files Allow user to upload files to server and delete files stored on server. Server File Man-

agement
Manage SSH keys Allows user to generate, import, edit and delete SSH keys.
Manage two-factor authen-
tication methods

Allows user to configure system-wide two-factor authentication settings.

Manage user support appli-
cation notifications

Allows to send, list and delete notifications that are being sent via user support applica-
tion.

Manage user scheduled
tasks

Allow user to create, edit and delete user-created Scheduled tasks (not system scheduled
tasks).

Manage users Allow user to manage user accounts. Please note that user having this access right
granted can modify own account to get any other system right granted.

Manage web service defi-
nitions

Allow user to manage system-wide definitions of web services.

Read server files Allow user to read files stored on the server and upload to agents (user still needs appro-
priate object rights for upload). Server File Management

Manage agent tunnels Allow user to list, bind and unbind agent tunnels.
Reporting server access Allow user to execute report generation, view generated reports, schedule report gener-

ation. Reporting
Schedule file upload Allow user to schedule server file upload to an agent. Scheduled tasks
Schedule object mainte-
nance

Allow user to schedule maintenance for an object. Scheduled tasks

Schedule script execution Allow user to schedule script execution. Scheduled tasks
Send notifications Allow user to send manual notifications via NetXMS server.
Unlink helpdesk tickets Allow user to unlink alarms from external helpdesk system Integration with external

HelpDesk.
View all alarm categories Allow user to view all alarms generated by Event Processing Policy rules. If this is off,

user will only see alarms for categories he/she has access to.
View audit log Allow user to view audit log.
View event log Allow user to view event log, alarm log.
View event templates con-
figuration

Allow user to view configured event templates.

View SNMP trap log Allow user to view SNMP trap log.
View syslog Allow user to view syslog.

By granting the View all alarms access right, the user (or members of the group) will have access to view all generated
alarms. Should it be required to configure alarm viewing access for specific users or groups, please refer toAlarm Category
Configurator.

9.2.4 UI Access Rules
UI access rules allow to hide specific UI elements from user. This does not securely blocks access - hiding is only
implemented in NetXMS Management Client, so e.g. nxshell is not affected by UI access rules.
UI access rules are stored in textual format, one UI element per line. UI elements have category:name format, *GLOB
wildcard can be used to match multiple elements. E.g. perspective:objects.maps refers to Maps perspective,
perspective:* refers to all perspectives, view:objects.fdb is FDB view (tab) on an object and * means all UI
elements.

9.2. Terms and Definitions 117

NetXMS Administrator Guide, Release 5.2.0

Adding UI element means that it should be included. Adding ! prefix means exclusion. ^ prefix means priority inclusion.
Rules are checked in the following order, until a matching rule is found:

1. Priority inclusion rules (rules with ^ prefix). If a rule is matched, UI element is enabled.
2. Exclusion rules (rules with ! prefix). If rule is matched, UI element is disabled.
3. Inclusion rules (without any prefix). If a rule is matched, UI element is enabled.
4. If no matching rules found, UI element is disabled.

Default configuration has * inclusion rule for user Everyone and Admins groups, thus enabling all UI elements. Based
on that exclusion rules can be added, or it’s possible to remove * rule and configure specific set of inclusion and, if needed,
exclusion rules.

9.3 User Authentication
9.3.1 Internal Password
This is the default method for user authentication. The password provided by the user when authenticating is compared
against the password stored in the NetXMS database.

Password Policy
Various restrictions can be put on internal passwords to force users to choose stronger passwords. The following server
configuration variables controls password policy:

Variable Description Default
MinPasswordLength Default minimum password length for a NetXMS user. The default applies only

if a per-user setting is not defined.
0

PasswordComplex-
ity

Required password complexity. See table below for details. 0

PasswordExpiration Password expiration time in days. If set to 0, password expiration is disabled. This
variable has no effect on users with the Password never expires flag set.

0

PasswordHisto-
ryLength

Number of previous passwords to keep. Users are not allowed to set password if
it matches one from their previous passwords list.

0

Possible flags for PasswordComplexity:

Value Description
1 Password must contain digits
2 Password must contain uppercase letters
4 Password must contain lowercase letters
8 Password must contain special characters
16 Forbid alphabetical sequences (a password is considered invalid if it contains an alphabetical sequence of

3 or more letters of the same case).
32 Forbid keyboard sequences (a password is considered invalid if it contains a sequence of 3 or more char-

acters that are located on keyboard next to each other, like ASDF).

Complexity flags can be combined to get the desired restrictions. For example, to force passwords to contain uppercase
and lowercase letters, PasswordComplexity variable must be set to 6 (2 + 4).
Changes to these configuration variables become effective immediately and do not require an NetXMS server restart.

118 Chapter 9. User management

NetXMS Administrator Guide, Release 5.2.0

9.3.2 RADIUS
If RADIUS authentication method is selected, the password provided by the user is sent to a RADIUS server for validation.
The user is granted access if the RADIUS server responds with Access-Accept. Communication between NetXMS
server and RADIUS server is controlled by the following server configuration variables:

Variable Description Default
value

RADIUS.AuthMethod RADIUS authentication method to be used (PAP, CHAP, MS-
CHAPv1, MS-CHAPv2).

PAP

RADIUS.NASIdentifier Value for NAS-Identifier attribute in RADIUS request (will not be
sent if empty)

none

RADIUS.NumRetries The number of retries for RADIUS authentication. 5
RADIUS.Port Port number used for connection to primary RADIUS server. 1645
RADIUS.SecondaryPort Port number used for connection to secondary RADIUS server. 1645
RADIUS.SecondarySecret Shared secret used for communication with secondary RADIUS

server.
netxms

RADIUS.SecondaryServer Host name or IP address of secondary RADIUS server. none
RADIUS.Secret Shared secret used for communication with primary RADIUS server. netxms
RADIUS.Server Host name or IP address of primary RADIUS server. none
RADIUS.ServiceType Value for Service-Type attribute in RADIUS request. Value of 0 will

exclude service type from request attributes.
8

RADIUS.Timeout Timeout in seconds for requests to RADIUS server 3

Changes to these configuration variables become effective immediately and do not require an NetXMS server restart.

9.3.3 Certificate Authentication
This type of authentication can be selected manually in user preferences.
Login process using a certificate works as follows:

1. The server sends a random challenge to the client
2. The client signs the servers challenge with their certificates’ private key and send a signed challenge along with the

public part of their certificate to the server
3. The server validates the certificate using its CA certificate
4. If the certificate is valid, the server validates the challenge signature using the certificates’ public key
5. If the signature is valid, the server compares the certificate subject with mapping data from the user record
6. If the mapping data matches with the certificate subject, access is granted

So, to login successfully, the user must posses a valid certificate with a private key. Authentication by certificate also
allows smart card login - you just need to store the certificate used for login on a smart card instead of in a local certificate
store.

Certificate management
CA certificates are looked up in the list configured by the “TrustedCertificate” configuration parameter in the server
configuration file.

9.3. User Authentication 119

NetXMS Administrator Guide, Release 5.2.0

Link certificate and user
In the “User Manager” view select the user properties for the required user. Then go to the “Authentication” section.

In the “Authentication Method” section: “Certificate”, “Certificate or Password”, “Certificate or RADIUS”.

The next two fields in combination:
Certificate mapping method: “Subject”
Certificate mapping data: the subject of the CA.

Certificate mapping method: “Public key”
Certificate mapping data: the public key of the certificate

Certificate mapping method: “Common name”
Certificate mapping data: if no mapping data is set, then the linking certificate CN = user name, otherwise
CN = mapping data

120 Chapter 9. User management

NetXMS Administrator Guide, Release 5.2.0

9.3.4 CAS authentication
Central Authentication Service (CAS) single sign-on is supported in the web interface only. The following
server configuration parameters control CAS operation: CAS.AllowedProxies, CAS.Host, CAS.Port, CAS.Service,
CAS.TrustedCACert, CAS.ValidateURL. See Server configuration parameters for the expanation of the meaning of the
mentioned parameters.
Changes to these configuration variables become effective immediately and do not require a NetXMS server restart.

9.3.5 Two-factor authentication
In addition to the above authentication methods, two-factor authentication using TOTP or via a notification channel can
be set up.
TOTP configuration is done in two places - in system-wide Two-factor authentication methods and in properties of specific
users.
First of all it is necessary to configure a method in Two-factor authentication methods. For TOTP, select the driver name
TOTP. No driver configuration is necessary. For using a notification channel, select the driver nameMessage and in driver
configuration the name of notification channel should be specified, e.g.:

ChannelName=NotificationChannelName

The second step is to add the two-factor authentication method in properties of a user.
For message method it is necessary to specify the recipient for the message. This concludes the configuration - on login
the user will receive a message with numeric code.
For the TOTP method no additional configuration is necessary. On the following login the user will be presented with a
dialog containing a qr code and a secret as text. After entering the secret into the users TOTP application, it will generate
a numeric code that should be entered to confirm TOTP initialization.
To repeat initialization it is possible to perform a reset for the TOTP method in the user properties. After that, on next
login of the user the dialog with qr code and secret will be presented again.
It is possible to specify several two-factor authentication methods. In this case the user will be presented with a menu on
login, allowing to choose which method to use.

9.4 Integration with LDAP
NetXMS can perform one-way synchronization of users and groups with an external LDAP server. The user list replica
is refreshed automatically.
Already existing NetXMS users or groups will not be modified during initial synchronization (e.g. user “admin” or group
“Everyone”).

9.4.1 LDAP synchronization configuration
Server parameters controlling LDAP synchronization:

9.4. Integration with LDAP 121

https://en.wikipedia.org/wiki/Time-based_one-time_password

NetXMS Administrator Guide, Release 5.2.0

Variable Description Default
value

LdapConnection-
String *

Comma- or whitespace-separated list of URIs in a format schema://host:port. Sup-
ported schemas: ldap://, ldaps:// (LDAP over TLS), ldapi:// (LDAP over IPC),
and cldap:// (connectionless LDAP).
Windows specific: for servers based onWindows this parameter should be set ac-
cording to these rules: empty string attempts to find the “default” LDAP server),
a domain name, or a space-separated list of host names or dotted strings that rep-
resent the IP address of hosts running an LDAP server to which to connect. Each
host name in the list can include an optional port number which is separated from
the host itself with a colon (:).
Note: most LDAP implementations except recent versions of OpenLDAP do not
support mixed schema types in the single connection string.

ldap://
localhost:
389

LdapSyncUser * User login for LDAP synchronization
LdapSyncUserPass-
word *

User password for LDAP synchronization

LdapSearchBase The LdapSearchBase configuration parameter is the DN of the entry at which to
start the search.

LdapSearchFilter * The LdapSearchFilter is a string representation of the filter to apply in the search.
LdapUserDeleteAc-
tion *

This parameter specifies what should be done while synchronization with users
deleted from the LDAP user/group. 0 - if user should be deleted from NetXMS
DB. 1 - if the user should be disabled but kept in the database. If 1 is chosen,
then on LDAP sync the user will be disabled and its description will be changed
to “LDAP entry was deleted.” Afterwards this user/group can be detached from
LDAP and enabled or deleted manually.

1

LdapUserMapping-
Name *

The name of the attribute which value will be used as a users’ login name

LdapGroupMap-
pingName *

The name of the attribute which value will be used as a group’s identifier

LdapMappingFull-
Name

The name of the attribute which value will be used as the user full name

LdapMappingDe-
scription

The name of the attribute which value will be used as a user description

LdapGroupClass The object class which represents group objects. If the found entry is not of a user
or group class, it will be simply ignored.

LdapUserClass * The object class that represents user objects. If the found entry is not of a user or
group class, it will be simply ignored.

Ldap-
GroupUniqueId

Unique identifier for the LDAP group object. By default LDAP groups are identi-
fied by DN. If in your configuration the DN can be changed at any time it is useful
to choose another attribute as a unique group identifier.

LdapUserUniqueId Unique identifier for the LDAP user object. By default LDAP users are identified
by DN. If in your configuration the DN can be changed at any time it is useful to
choose another attribute as a unique user identifier.

LdapSyncInterval * This parameter is for setting a synchronization interval in minutes between the
NetXMS server and the LDAP server. If the synchronization parameter is set to
0 the synchronization will not be done.

0

LdapPageSize * Limit of records that can be returned in one search page. 1000

* Required fields

Synchronization also can be done manually with ldapsync or the ldap command in the server debug console.

122 Chapter 9. User management

ldap://localhost:389
ldap://localhost:389
ldap://localhost:389

NetXMS Administrator Guide, Release 5.2.0

9.4.2 LDAP users/groups relationships with native NetXMS users/groups
LDAP users and groups are handled in exactly the same way as users from the internal database. The only difference
is that for LDAP group membership is refreshed at each synchronisation and any non-LDAP user then will be removed
from the group.

9.4.3 Login with help of LDAP user
The login process is completely transparent for the user - their user name should match the attribute set by LdapMapping-
Name and their password should be the current LDAP password for that user.

9.4.4 LDAP configuration debugging
If users are not synchronized, the reason can be found by running ldapsyncmanually or by the ldap command in the server
debug console on debug lever 4.
Log when LDAP sync passed correctly:

[11-Sep-2014 16:28:08.352] [DEBUG] LDAPConnection::initLDAP(): Connecting to LDAP␣

↪→server

[11-Sep-2014 16:28:08.353] [DEBUG] LDAPConnection::syncUsers(): Found entry count: 3

[11-Sep-2014 16:28:08.354] [DEBUG] LDAPConnection::syncUsers(): Found dn: CN=Users,

↪→CN=Customers,DC=Northwind,DC=Extranet

[11-Sep-2014 16:28:08.354] [DEBUG] LDAPConnection::syncUsers(): CN=Users,CN=Customers,

↪→DC=Northwind,DC=Extranet is not a user nor a group

[11-Sep-2014 16:28:08.354] [DEBUG] LDAPConnection::syncUsers(): Found dn: CN=zev333,

↪→CN=Users,CN=Customers,DC=Northwind,DC=Extranet

[11-Sep-2014 16:28:08.354] [DEBUG] LDAPConnection::syncUsers(): User added: dn:␣

↪→CN=zev333,CN=Users,CN=Customers,DC=Northwind,DC=Extranet, login name: zev333, full␣

↪→name: (null), description: (null)

[11-Sep-2014 16:28:08.354] [DEBUG] LDAPConnection::syncUsers(): Found dn: CN=user,

↪→CN=Users,CN=Customers,DC=Northwind,DC=Extranet

[11-Sep-2014 16:28:08.354] [DEBUG] LDAPConnection::syncUsers(): User added: dn:␣

↪→CN=user,CN=Users,CN=Customers,DC=Northwind,DC=Extranet, login name: user, full␣

↪→name: (null), description: (null)

[11-Sep-2014 16:28:08.354] [DEBUG] LDAPConnection::closeLDAPConnection(): Disconnect␣

↪→from ldap.

[11-Sep-2014 16:28:08.354] [DEBUG] UpdateLDAPUsers(): User added: dn: CN=zev333,

↪→CN=Users,CN=Customers,DC=Northwind,DC=Extranet, login name: zev333, full name:␣

↪→(null), description: (null)

[11-Sep-2014 16:28:08.354] [DEBUG] UpdateLDAPUsers(): User added: dn: CN=user,

↪→CN=Users,CN=Customers,DC=Northwind,DC=Extranet, login name: user, full name: (null),

↪→ description: (null)

[11-Sep-2014 16:28:08.354] [DEBUG] RemoveDeletedLDAPEntry(): Ldap uid=john,ou=People,

↪→dc=nodomain entry was removed from DB.

[11-Sep-2014 16:28:08.354] [DEBUG] RemoveDeletedLDAPEntry(): Ldap uid=zev,ou=People,

↪→dc=nodomain entry was removed from DB.

[11-Sep-2014 16:28:08.354] [DEBUG] RemoveDeletedLDAPEntry(): Ldap uid=kasio,ou=People,

↪→dc=nodomain entry was removed from DB.

[11-Sep-2014 16:28:08.355] [DEBUG] RemoveDeletedLDAPEntry(): Ldap uid=usr1,ou=People,

↪→dc=nodomain entry was removed from DB.

Login credentials incorrect:

9.4. Integration with LDAP 123

NetXMS Administrator Guide, Release 5.2.0

[11-Sep-2014 15:49:39.892] [DEBUG] LDAPConnection::initLDAP(): Connecting to LDAP␣

↪→server

[11-Sep-2014 15:49:39.896] [DEBUG] LDAPConnection::loginLDAP(): LDAP could not login.␣

↪→Error code: Invalid credentials

[11-Sep-2014 15:49:39.896] [DEBUG] LDAPConnection::syncUsers(): Could not login.

Search base is set incorrectly or sync user does not have access:

[11-Sep-2014 15:54:03.138] [DEBUG] LDAPConnection::initLDAP(): Connecting to LDAP␣

↪→server

[11-Sep-2014 15:54:03.140] [DEBUG] LDAPConnection::syncUsers(): LDAP could not get␣

↪→search results. Error code: No such object

9.4.5 LDAP configuration examples
Active Directory

Variable Value
LdapConnectionString ldap://10.5.0.35:389
LdapSyncUser CN=user,CN=Users,CN=Customers,DC=Domain,DC=Extranet
LdapSyncUserPass-
word

xxxxxxxx

LdapSearchBase CN=Customers,DC=Domain,DC=Extranet
LdapSearchFilter (objectClass=*)
LdapUserDeleteAction 1
LdapMappingName sAMAccountName
LdapMappingFull-
Name

displayName

LdapMappingDescrip-
tion

description

LdapGroupClass group
LdapUserClass user
LdapGroupUniqueId objectGUID
LdapUserUniqueId objectGUID
LdapSyncInterval 1440

124 Chapter 9. User management

ldap://10.5.0.35:389

NetXMS Administrator Guide, Release 5.2.0

OpenLDAP

Variable Value
LdapConnectionString ldap://10.5.0.35:389
LdapSyncUser cn=admin,dc=nodomain
LdapSyncUserPass-
word

xxxxxxxx

LdapSearchBase dc=nodomain
LdapSearchFilter (objectClass=*)
LdapUserDeleteAction 1
LdapMappingName cn
LdapMappingFull-
Name

displayName

LdapMappingDescrip-
tion

description

LdapGroupClass groupOfNames
LdapUserClass inetOrgPerson
LdapGroupUniqueId entryUUID
LdapUserUniqueId entryUUID
LdapSyncInterval 1440

9.5 Managing User Accounts
All NetXMS user accounts can be managed from the User Manager view available at Configuration ‣ User Manager in
NetXMS Management Client. Only users with granted system right Manage users can access User Manager.

• To create a new user account, select Create new user from the view menu or context menu.
• To create a new group, select Create new group from the view menu or context menu.
• To delete user account, select it in the list, right-click, and selectDelete from pop-up menu. You can delete multiple
accounts at a time.

• To modify properties of a user or group, select it in the list, right-click, and select Properties from the pop-up menu.
• To reset the password of a user, select the user account in the list, right-click, and select Change password from the
pop-up menu.

9.6 Audit
All important user actions are written to the audit log. There are two audit logging modes: internal and external. Internal
audit logging is on by default and writes audit records into a table in the NetXMS database. External audit logging allows
sending audit records to an external system via the syslog protocol. External audit logging is off by default. Audit logging
is controlled by the following server configuration variables:

9.5. Managing User Accounts 125

ldap://10.5.0.35:389

NetXMS Administrator Guide, Release 5.2.0

Variable Description Default value
AuditLogRetention-
Time

Retention time in days for the records in the internal audit log. All
records older than specified will be deleted by the housekeeping pro-
cess.

90

EnableAuditLog Enable (1) or disable (0) audit logging. 1
ExternalAuditFacil-
ity

Syslog facility to be used in audit log records sent to external server. 13

ExternalAuditPort UDP port of the external syslog server to send audit records to. 514
ExternalAuditServer External syslog server to send audit records to. If set to none, external

audit logging is disabled.
none

ExternalAuditSever-
ity

Syslog severity to be used in audit log records sent to the external
server.

5

ExternalAuditTag Syslog tag to be used in audit log records sent to the external server. netxmsd-audit

126 Chapter 9. User management

CHAPTER

TEN

OBJECT MANAGEMENT

10.1 Object browser
Object browser is a view in in Management Client. It presents all existing objects as a hierarchical structure. Overall
description of objects can be found in concepts part: Objects.

10.1.1 Object browser options
Object browser has a number of options that define how object tree is displayed.
Object browser has following options:

• Show filter CTRL+F2, that shows search line that has special syntaxes for search. Syntaxes description can be
found there: Filters.

• Show status indicator CTRL+F3
• Hide unmanaged objects
• Hide check templates. This option will not show Business Services templates.

10.1.2 Filters
Buy default search is done by node name. In this type of search can be used ‘*’ and ‘?’ symbols for pattern search.
But there are few prefix that can be used for other search options:

• ‘/’ - will search in comments
• ‘>’ - will search by IP address

10.2 Objects
Detailed information about objects, it’s usage, parents and children can be found in concept chapter, Objects. In this
section will be described only actions and properties that can be applied on different object classes.

10.2.1 Subnet
Property pages:
Except common properties subnets has Map Appearance and Trusted Nodes tabs. Map Appearance tab defines images
that will be used to display this object on a Network Map and drill-down object (object that will be opened when double
click on this object on Network Map). Trusted Nodes is used to define object list that have access to this object from the
script.
Menu items:

127

NetXMS Administrator Guide, Release 5.2.0

Full subnet can be managed or unmanaged. Management status will be applied to all subnet node. If subnet is deleted
and is the only parent of a node, then node also will be deleted with the subnet. Upload file menu item will upload file
from server to all nodes that have agent and have access to upload directory.
Under Toolsmenu are available predefined object tools that will be executed on each subnet node. More about object tool
configuration can be found there: Object Tools.
Execute server script will open execute server script view where arbitrary script can be executed. Alarms menu item will
open view with all subnet nodes’ alarms. And 802.1x port state will open table with port authentication states, that can be
exported to CSV.

10.2.2 Node
Property pages:
Except common properties node hasCommunications tab that is responsible for communication options with this node(like
host name, agent proxy and authentication, SNMP proxy and authentication and ICMP proxy), Polling tab is responsible
for disabling pols for specific node, Location is used to configure location of the node,Map Appearance tab defines images
that will be used to display this object on a Network Map and drill-down object (object that will be opened when double
click on this object on Network Map).
Menu items:
Usually interfaces for nodes are created automatically by Configuration poll results, but they can be also created manually
with help of menu item Create interface… This interface is a physical port is used just for information purposes.

Information about service monitoring and Create network service… menu item can be found there: Network Service
Monitoring.
When node is unmanaged/managed - all it’s children like interfaces and service monitoring are also unmanaged/managed.
In unmanaged state metrics are not collected and no polls are scheduled.
Node can be deleted from NetXMS by Delete menu item. Node is not deleted synchronously, but it is scheduled node
deletion. While node deletion all data bout this node is also collected(like metrics).
If zones are enabled, then zone can be changed using Change zone… item. File manager will open agent file manager
view. By default this view will be empty, to configure it refer to Agent file management chapter. Upload file can be used
to upload file from server to node. This action can be applied simultaneously to all nodes.
Take screenshot for now halfway implemented functionality. For now screenshot can be taken only from Windows ma-
chines.
Remote control option will appear for nodes where VNC install is detected. In order to take advantage of this feature, one
should add EnableTCPProxy = yes in agent configuration on remote node followed by agent restart. Run Configuration

128 Chapter 10. Object management

https://en.wikipedia.org/wiki/VNC

NetXMS Administrator Guide, Release 5.2.0

Poll on the node you want to VNC to. Target VNC may require loopback connection to be enabled as well as firewall
settings adjusted. In cases when there is no agent installed on remote node, but VNC is present, we can use agent on
NetXMS server or agent serving as zone proxy. In this scenario, one would need to add EnableTCPProxy = yes in agent
configuration on server or on agent that acts like proxy for zone. Your NetXMS user should have “Initiate TCP proxy
sessions” system access right. In addition, in object tree user should have “Control” access rights to that node.
Description of Edit agent’s configuration functionality can be found in Edit configuration file remotely chapter.
Poll options:

Poll Name Description
Status
Configuration
Configuration (full)
Instance discovery
Instance names
Topology

Under Tools menu are available predefined object tools that will be executed on selected node. More about object tool
configuration can be found there: Object Tools.
Execute server script will open execute server script view. Were arbitrary script can be executed. Node can be accessed
with $node variable.
MIB Explorer will open MIB explorer view. If geolocation of the node is set, then with help of Geolocation item can be
opened map with shown on it object location. Software Inventory will show full software list for nodes with Windows
systems or Linux systems(that used rpm or deb packages) and have NetXMS agent installed. Service Dependency will
build tree from this node with all container where this node is included. Alarms will open alarm view with alarms only
for this specific node.
Find switch port will open view with log of searches of switch port to which a node is connected. During search the
interfaces will be checked one by one and first successful result will be shown.
802.1x port state will open table with port authentication states, that can be exported to CSV.
Topology menu item contains all options of predefined network maps for this node and some other options:
Routing table IP route from… will build network map with route from selected node to node that was selected in Object
selector window. IP route to… will build network map with route to selected node from node that was selected in Object
selector window. IP Neighbors will show all IP neighbors of this node.
Switch forwarding database(MAC address table) VLANs Layer 2 Topology

Radio interface Wireless stations

Last values will open Last Values view. Data Collection Configuration will open Data Collection Configuration view, that
is used to configure collected metrics from node.

10.2.3 Rack
Rack is an object that visualizes server room organization in NetXMS. Node and chassis objects can be assigned to a rack
in node properties, specifying position in the rack, height (number of occupied rack units), orientation (does it occupy
full depth of the rack, or only present on front or back side of the rack). Front and/or rear images can be selected from
Image library.
Rack visualization is available in Object Detail -> Rack view. Left click on a rack unit display a pop-up with brief
information about the node or chassis. Right click will display node or chassis context menu. Double click on a chassis
will open Chassis View in a separate tab.

10.2. Objects 129

NetXMS Administrator Guide, Release 5.2.0

Status of rack units is denoted with color rectangle on the left edge of the rack.

10.2.4 Chassis
Chassis is an object visualizing a rack-mount chassis that have plug-in modules. Chassis visualization is available in Object
Detail -> Chassis view.

Each node that represents chassis module can have an image that will be displayed atop of chassis image. Status of each
node is denoted with color rectangle in the upper left corner or it’s image. Left click on node will display a pop-up with
brief information about the node. Right click will display node context menu.

It is possible to configure the size of module’s image and it’s position on chassis image. Vertical size and position could
be specified in mm or rack units (RU), while horizontal - in mm or horizontal pitch units (HP). Size calculation assumes

130 Chapter 10. Object management

NetXMS Administrator Guide, Release 5.2.0

that 1U chassis has 45mm height and 483mm width (including mounting brackets). Position (0, 0) is in the upper left
corner.
You can use a graphic editor, e.g. Gimp to find position values in mm. Open chassis image in Gimp and set image width
to 483 mm using Image -> Scale image. Now in the bottom left corner you can see current coordinates of mouse cursor
in mm.
Chassis module images should be uploaded using Image Library Image library.

10.2.5 Cluster
Is created to display nodes logical organization in cluster. Cluster nodes may have shared resources and networks, pro-
cesses may move between nodes, so metric collection should be organized accordingly. Cluster object provides option to
aggregate collected data from cluster nodes. More about data aggregation can be found there: Data aggregation.
Besides default property pages cluster has also:

• Cluster Resources - there can be configured IP resources of the cluster. Further on Cluster view of Object
Details will be shown current owner of resources

• Cluster Networks

• Poling

• Dashboards - there dashboard can be associated with object, so on right click associated dashboards will be
displayed in the list

• External Resources

• Location

• Map Appearance

• Trusted Nodes

10.2.6 Interface
10.2.7 Network Service
10.2.8 VPN Connector
10.2.9 Condition
Conditions may represent more complicated status checks because each condition can have a script attached. Interval
for evaluation of condition status is configured in Server Configuration Variables as ConditionPollingInterval with default
value 60 seconds. Input values for the condition script can be set in object properties. Such values are accessible via $1,
$2, … variables inside the script. If the script returns 0, an activation event with the defined severity is created. If the
script returns any other value, then a deactivation event is created.
Besides default property pages condition has also:

• Events and Status, were can be set activation and deactivation events, source of this objects and status of active
and inactive condition.

• Data, were can be set DCI’s that’s data will be given to a script for condition status calculation.
• Script tab is used to write script that will calculate if condition should be activated or deactivated.
• Map Appearance tab defines images that will be used to display this object on a Network Map and drill-down
object (object that will be opened when double click on this object on Network Map).

• Trusted Nodes is used to define object list that
have access to this object from the script.

10.2. Objects 131

NetXMS Administrator Guide, Release 5.2.0

Menu items:
Condition can be managed/unmanaged. If condition is unmanaged, evaluation of condition is not run. Condition can be
deleted.

10.2.10 Container
Containers can be created in Infrastructure Services tree. Existing nodes and subnets can be added to containers by using
Bind operation, and removed by using Unbind operation. New nodes, conditions, clusters, containers, mobile devices and
racks can also be created. They can be created using required menu item of container under which this object should
appear. Containers and nodes inside them can be moved by Move to another container menu item or using drag&drop.
Besides default property pages condition has also:

• Automatic bind about this functionality can be found there
• Location is used to configure location of the node
• Map Appearance tab defines images that will be used to display this object on a Network Map and drill-down
object (object that will be opened when double click on this object on Network Map).

• Trusted Objects is used to define object list that
have access to this object from the script.

Menu items:
There are special menu item for each object that can be created in container. Objects like rack, container, mobile device,
cluster are manually created objects. Node can be manually created or found by network discovery. In case if it is required
to add already existing object to container use Bind… menu item. To remove node from container, but do not delete it
use Unbind… menu item.
Using Manage/Unmanage all nodes will be managed/unmanaged under container. Container can be deleted. If deleted
container was the only parent of an object, then this object will be also deleted. Upload file… will upload file from server
to all nodes under container, same as each tool under Tools menu item will be executed on each node.
Execute script will open execute server script view. Where an arbitrary script can be executed. Geolocation will show
location of container on geographic map.
Logs will open alarm/event/trap view options with all active alarms for all children of this container.

Automatic bind option
For each container can be configured automatic binding rules. This can be done in Automatic Bind Rules tab of container
properties.

132 Chapter 10. Object management

NetXMS Administrator Guide, Release 5.2.0

Functionality would check and bind or unbind containers to nodes according to auto-bind script.
This script will be executed each configuration poll of each node.

10.2.11 Circuit
Circuits can be created in Infrastructure Services tree. Existing node interfaces can be added to circuit by using Bind
operation, and removed by using Unbind. This object will generate events when state of underlying interface changes, and
being an event source it will be able to have alarms on it. Reference of multiple interfaces will allow to use this object to
represent different types of network services - multilink interfaces, links between sites, virtual circuits, etc. Circuits and
interfaces inside them can be moved by Move to another container menu item or using drag&drop.
Besides default property pages circuit has also:

• Automatic bind functionality is described in more details here
• Map Appearance tab defines images that will be used to display this object on a Network Map and drill-down
object (object that will be opened when double click on this object on Network Map).

• Trusted Objects is used to define object list that have access to this object from the script.
Menu items:
In case if it is required to add already existing interface to circuit use Bind… menu item. To remove nodeinterface from
circuit, but do not delete it use Unbind… menu item.
Using Manage/Unmanage all interfaces will be managed/unmanaged under circuit.
Execute script will open execute server script view. Where an arbitrary script can be executed.
Logs will open alarm/event/trap view options with all active alarms for this circuit.
Automatic bind option
For each circuit one can configure automatic bind rules. It can be done in Automatic Bind Rules tab of circuit properties
and it would check and bind or unbind circuit to interfaces according to auto-bind script.

10.2. Objects 133

NetXMS Administrator Guide, Release 5.2.0

Auto bind script will be executed while circuit auto bind is polled.

10.3 Common object properties
10.3.1 General
Each object has General tab in properties. There can be checked object class and ID, and changed object name. Each
object has unique ID in the system. Object can be accessed by this ID.

10.3.2 Custom attributes
Every object can have custom attributes defined either by user or integrated application via NetXMS API. Custom at-
tributes distinguished by names (an attribute name can contain up to 127 printable characters), and have string values
of unlimited length. However, if you wish to access custom attributes in NXSL scripts as properties of node object, you
should name them conforming to NXSL identifier naming constraints. To create or change value of custom attribute
manually, right-click an object in NetXMS client, and select Properties ‣ Custom Attributes tab.

Custom attributes with name starting with $ can be set from NXSL and read from NXSL (or macro), but never sent to
management client and cannot be updated from management client. They can be used when it is required to store some
information about node that should not be modified by users or seen by them.
Custom attributes with name starting with . are hidden, but can be seed and updated from management client if Show
hidden custom attributes is enabled in it’s properties.

10.3.3 Status calculation
Each object has it’s own status calculation properties. Status of an object calculated based on:

• Polling results
• Status of child objects (e.g. interfaces of node, nodes under container)

134 Chapter 10. Object management

NetXMS Administrator Guide, Release 5.2.0

• Active alarms, associated with the object (after an alarm is resolved or terminated, it no longer affects object status)
• Value of status DCIs (DCI that has Use this DCI for node status calculation property enabled)

There are multiple options for status calculation that can be configured for specific objects or globally.
Status calculation has two configuration parts:

• status propagation - the way how status from object is pushed to upper objects;
• status calculation - the way how object is calculating it’s status based on statuses propagated by children objects.
Once child object status is calculated most critical status is taken from status of underlying objects, associated
alarms and status DCIs.

For status propagation the following options are available:
• Default - will take global configuration parameter (unchanged by default)
• Unchanged - will propagate status value without changes
• Fixed value: Normal, Warning, Minor, Major, Fixed - always will return fixed selected status
• Relative with offset - will add or remove some number for
• Severity based - will convert current status based on user configured status mapping table

For status calculation the following options are available:
• Default - will take global configuration parameter (most critical by default)
• Most critical - Most critical status will be taken
• Single threshold (%) - Percentage of objects that should be in status to change status of object
• Multiple thresholds - Same as previous but threshold is set for each status

10.3. Common object properties 135

NetXMS Administrator Guide, Release 5.2.0

Example of threshold status calculation

Statuses of nodes in table:

Normal Warning Minor Major Critical
Node 1 1 0 0 0 0
Node 2 1 1 1 1 1
Node 3 1 1 0 0 0
Node 4 1 1 1 0 0

If “Single threshold (%)” option is selected and configuration is next:
• 75%

In this case status of container will be Warning, as 3/4 of nodes have Warning status or worse.
If “Multiple thresholds” is selected and configuration is next:

• Warning 80
• Minor 50
• Major 25
• Critical 35

In this case status of Container will be Major as bot thresholds for Minor and Major are reached and most critical from
them is taken.

10.3.4 Comments
Each object in Object Tree can have comment. Comment can be set in Properties of the object. It is possible to usemacros
for event processing in the comments.

136 Chapter 10. Object management

NetXMS Administrator Guide, Release 5.2.0

10.3.5 Access control
Object access rights controls access toNetXMS objects. Permissions given to an object inherited by all child objects, unless
specifically blocked by turning off Inherit access rights from parent object(s) option in object’s access control properties.
Permissions given at different levels of the object tree summarize to form effective user rights for the object.

10.3. Common object properties 137

NetXMS Administrator Guide, Release 5.2.0

The following object access rights can be granted:

138 Chapter 10. Object management

NetXMS Administrator Guide, Release 5.2.0

Access Right Description
Read View object in the tree and read it’s information. For node objects, read access allows

to view collected DCI data.
Read agent data
Read SNMP data
Modify Modify object’s properties (except access control).
Create child objects Create child objects (or bind existing) under this object.
Delete Delete this object.
Control For node objects, execute object tools of type Remote Command.
Send events Send events on behalf of this object.
View alarms View alarms with this object as source.
Update alarms Add comments to alarms, acknowledge alarms with this object as source.
Terminate alarms Terminate alarms with this object as source.
Create helpdesk tickets Create ticket in external helpdesk system
Push data Push data for DCIs on this object.
Access control Modify access control list for this object. Please note that user with this access right can

grant any other access rights to own account.
Download files Allow user to download files from this node (from paths defined by filemngr subagent

settings in agent configuration file). This access right is also checked when downloading
or tail of file is done from object tools.

Upload files Allow user to upload files to this node (to paths defined by filemngr subagent settings in
agent configuration file).

Manage files Allow user to move, rename, delete files on this node (in paths defined by filemngr sub-
agent settings in agent configuration file).

Control maintenance mode
Take screenshot Allow user to take screenshot of this node’s screen (Windows only).

10.4 Object Details
Object details view providesmain information about object. Each object hasOverview tab that displays general information
about object (like: ID, GUID, Class, and status of the object) and Comments.

10.4.1 Subnet

10.5 Object Tools
It is possible to create tools for execution on objects or alarms. Configured object tools are available under Tools in object
browser’s context menu or context menu of an alarm. A tool can ran a command on NetXMS server or node, obtain data
from SNMP or NetXMS agent, etc…
Object tools can be executed on Containers in object browser - depending on configuration of specific object tool it will
be executed in context of that container or will be executed for all objects under that container.
Tools can be managed in Configuration ‣ Object Tools. There are some predefined object tools that are available after
installation of the system.
If an object tool is not needed for some time it can be just disabled and then enabled when required. When object tool is
disabled it is not shown under “Tools” item of context menu. If an image (16x16 px) is configured for an object tool, it
will be displayed next to object tool name in “Tools” menu.
Tool can have input fields, filter depending on execution object,macro substitution and personal access control configuration.

10.4. Object Details 139

NetXMS Administrator Guide, Release 5.2.0

10.5.1 Object tool types
Internal
The only operation available for now is wakeup that sends magic packet to wake up a node.

Agent Command
This tool will execute command on an agent node and will show it’s output if Command generates output option is enabled.

140 Chapter 10. Object management

NetXMS Administrator Guide, Release 5.2.0

Field name Description
Name Name that will be shown in node menu. Submenu can be created with “->” nota-

tion.
Description Description is shown in “Object Tools” view. Should be used to describe tool

purpose.
Command Name of agent command that will be executed. There is a number of commands

built into agent and additional commands can be added by defining them in agent’s
config. If command accepts parameters they are supplied it the following format:
commandName param1 param2 param3...

Command generates output If this option is selected then command execution will open a window with it’s
output.

This tool requires confirmation
before execution

If chosen a Yes/No pop-up with text from “Confirmation message” field will be
shown before execution of tool.

Confirmation message Contains message that will be shown in confirmation pop-up.
Show this tool in node commands If this option is selected, then this tool will be shown for applicable nodes onObject

Details view as node command.
Command name Name of the command
Command short name Is used when Command name is too long for display.
Disable Object Tool If chosen, tool is not shown in Object browser’s context menu and Commands in

Object Details.

SNMP Table
SNMP Table is used to get SNMP table from node on which it is executed and then show results in the table form.

10.5. Object Tools 141

NetXMS Administrator Guide, Release 5.2.0

Field name Description
Name Name that will be shown in node menu. Submenu can be created with “->” nota-

tion.
Description Description is shown in “Object Tools” view. Should be used to describe tool

purpose.
Title Title of view where table will be shown.
Use as index for second and sub-
sequent columns OID suffix of
first column

This option defines that suffix of columns OID will be used as suffix for columns
OID’s to match lines

Use as index for second and sub-
sequent columns Value of first
column

This option defines that value of columns OID will be used as suffix for columns
OID’s to match lines

This tool requires confirmation
before execution

If chosen, before execution of tool will be shown Yes/No pop-up with text from
“Confirmation message” field.

Confirmation message Can be set the message that will be shown in confirmation pop-up.
Show this tool in node commands If this option is selected, then this tool will be shown for applicable nodes onObject

Details view as node command.
Command name This will be shown as a name of the command.
Command short name Is used when usual name is too long for display.
Disable Object Tool If chosen, tool is not shown in node menu.

Agent List
Agent List is used to get agent list from node on which it is executed and then show results in the table form. Regular
expression is used to split received data to columns.

142 Chapter 10. Object management

NetXMS Administrator Guide, Release 5.2.0

Field name Description
Name Name that will be shown in node menu. Submenu can be created with “->” nota-

tion.
Description Description is shown in “Object Tools” view. Should be used to describe tool’s

purpose.
Title Title of view where table will be shown.
Parameter Name of list
Regular expression Regular expression that will parse each line of list to separate it on columns defined

in Columns tab.
This tool requires confirmation
before execution

If chosen, before execution of tool will be shown Yes/No pop-up with text from
“Confirmation message” field.

Confirmation message Can be set the message that will be shown in confirmation pop-up.
Show this tool in node commands If this option is selected, then this tool will be shown for applicable nodes onObject

Details view as node command.
Command name This will be shown as a name of the command.
Command short name Is used when usual name is too long for display.
Disable Object Tool If chosen, tool is not shown in node menu.

Agent Table
Agent Table is used to get agent table from node on which it is executed and then show results in the table form.

10.5. Object Tools 143

NetXMS Administrator Guide, Release 5.2.0

Field name Description
Name Name that will be shown in node menu. Submenu can be created with “->” nota-

tion.
Description Description is shown in “Object Tools” view. Should be used to describe tool

purpose.
Title Title of view where table will be shown.
Parameter Name of list
This tool requires confirmation
before execution

If chosen, before execution of tool will be shown Yes/No pop-up with text from
“Confirmation message” field.

Confirmation message Can be set the message that will be shown in confirmation pop-up.
Show this tool in node commands If this option is selected, then this tool will be shown for applicable nodes onObject

Details view as node command.
Command name This will be shown as a name of the command.
Command short name Is used when usual name is too long for display.
Disable Object Tool If chosen, tool is not shown in node menu.

URL
URL tool opens URL in web browser.

144 Chapter 10. Object management

NetXMS Administrator Guide, Release 5.2.0

Field name Description
Name Name that will be shown in node menu. Submenu can be created with “->” nota-

tion.
Description Description is shown in “Object Tools” view. Should be used to describe tool

purpose.
URL URL that should be passed to browser to be opened.
TCP tunnel If enabled, on object tool execution management client will open a local port and

establish tunnel via the server and via a proxy agent. Proxy should have En-

ableTCPProxy=yes in it’s configuration file. The following macros can be used
in URL field:

• ${local-address} - local IP address
• ${local-port} - local port number

This tool requires confirmation
before execution

If chosen, before execution of tool will be shown Yes/No pop-up with text from
“Confirmation message” field.

Confirmation message Can be set the message that will be shown in confirmation pop-up.
Show this tool in node commands If this option is selected, then this tool will be shown for applicable nodes onObject

Details view as node command.
Command name This will be shown as a name of the command.
Command short name Is used when usual name is too long for display.
Disable Object Tool If chosen, tool is not shown in node menu.
Run in container context If this option is selected, then tool will run only for selected container, not affecting

children nodes.

Local Command
Local Command tool will execute command on the node, where Desktop Management Client is running and will show
it’s output if Command generates output option is enabled.
This tool type is not visible from Web Client as it is not possible to execute command on web page receiver’s machine.

10.5. Object Tools 145

NetXMS Administrator Guide, Release 5.2.0

146 Chapter 10. Object management

NetXMS Administrator Guide, Release 5.2.0

Field name Description
Name Name that will be shown in node menu. Submenu can be created with “->” nota-

tion.
Description Description is shown in “Object Tools” view. Should be used to describe tool

purpose.
Command Command that should be executed on a local machine
TCP tunnel If enabled, on object tool execution management client will open a local port and

establish tunnel via the server and via a proxy agent. Proxy should have En-

ableTCPProxy=yes in it’s configuration file. The following macros can be used
in command field:

• ${local-address} - local IP address
• ${local-port} - local port number

Command generated output If this option is selected, then command execution will open a window with output
of the command.

This tool requires confirmation
before execution

If chosen, before execution of tool will be shown Yes/No pop-up with text from
“Confirmation message” field.

Confirmation message Can be set the message that will be shown in confirmation pop-up.
Show this tool in node commands If this option is selected, then this tool will be shown for applicable nodes onObject

Details view as node command.
Command name This will be shown as a name of the command.
Command short name Is used when usual name is too long for display.
Disable Object Tool If chosen, tool is not shown in node menu.
Run in container context If this option is selected, then tool will run only for selected container, not affecting

children nodes.

Server Command
Server command tool can be used to execute command on the server.

10.5. Object Tools 147

NetXMS Administrator Guide, Release 5.2.0

Field name Description
Name Name that will be shown in node menu. Submenu can be created with “->” nota-

tion.
Description Description is shown in “Object Tools” view. Should be used to describe tool

purpose.
Command Command that should be executed on a server
Command generated output If this option is selected, then command execution will open a window with output

of the command.
This tool requires confirmation
before execution

If chosen, before execution of tool will be shown Yes/No pop-up with text from
“Confirmation message” field.

Confirmation message Can be set the message that will be shown in confirmation pop-up.
Show this tool in node commands If this option is selected, then this tool will be shown for applicable nodes onObject

Details view as node command.
Command name This will be shown as a name of the command.
Command short name Is used when usual name is too long for display.
Disable Object Tool If chosen, tool is not shown in node menu.
Run in container context If this option is selected, then tool will run only for selected container, not affecting

children nodes.

Download File
Download file tool can be used to monitor agent logs. This tool will retrieve the content of the file from agent.

148 Chapter 10. Object management

NetXMS Administrator Guide, Release 5.2.0

Field name Description
Name Name that will be shown in node menu. Submenu can be created with “->” nota-

tion.
Description Description is shown in “Object Tools” view. Should be used to describe tool

purpose.
Remote File Name Name of file that will be retrieved. In Windows systems should be with double

back slash as a separator(C:\\log\\log.log). Can be used strftime(3C) macros
Limit initial download size Limits the size of download file. If is set to 500, tool will retrieve last 500 bytes

of requested file. If is set to 0, complete file will be retrieved.
Follow file changes If chosen, “File View” will be updated when file will be populated with new data.
This tool requires confirmation
before execution

If chosen, before execution of tool will be shown Yes/No pop-up with text from
“Confirmation message” field.

Confirmation message Can be set the message that will be shown in confirmation pop-up.
Show this tool in node commands If this option is selected, then this tool will be shown for applicable nodes onObject

Details view as node command.
Command name This will be shown as a name of the command.
Command short name Is used when usual name is too long for display.
Disable Object Tool If chosen, tool is not shown in node menu.

Server Script
Server Script tool can be used to execute NXSL script from Script Library. This tool provide full range of capabilities that
are available thought NXSL scripting.

10.5. Object Tools 149

http://www.unix.com/man-page/opensolaris/3c/strftime/

NetXMS Administrator Guide, Release 5.2.0

Field name Description
Name Name that will be shown in node menu. Submenu can be created with “->” nota-

tion.
Description Description is shown in “Object Tools” view. Should be used to describe tool

purpose.
Script Name of the script from the Script Library
Command generates output If chosen, new window with script execution result will be opened.
This tool requires confirmation
before execution

If chosen, before execution of tool will be shown Yes/No pop-up with text from
“Confirmation message” field.

Confirmation message Can be set the message that will be shown in confirmation pop-up.
Show this tool in node commands If this option is selected, then this tool will be shown for applicable nodes onObject

Details view as node command.
Command name This will be shown as a name of the command.
Command short name Is used when usual name is too long for display.
Disable Object Tool If chosen, tool is not shown in node menu.
Run in container context If this option is selected, then tool will run only for selected container, not affecting

children nodes.

10.5.2 Properties
Filter
Filters are used to chose on which nodes to show object tool. There are 5 types of filtering. Show object tool:

1. if agent available on a node
2. if node supports SNMP
3. if node SNMP OID matches with provided string

150 Chapter 10. Object management

NetXMS Administrator Guide, Release 5.2.0

4. if nodes OS matches provided comma separated regular expression list
5. if provided template name matches provided comma separated regular expression list

Access Control
In Access Control tab can be defined which users or groups can execute this action. If the list is empty, only administrator
will be able to execute this action.

10.5. Object Tools 151

NetXMS Administrator Guide, Release 5.2.0

Columns
Columns tab is used only for Agent List and SNMP Table object tool types.
For SNMP Table it describes name and type of matching OID from response message.

152 Chapter 10. Object management

NetXMS Administrator Guide, Release 5.2.0

10.5. Object Tools 153

NetXMS Administrator Guide, Release 5.2.0

Input fields
There is option to add input fields for object tool commands. This fields are defined on the Input fields view and added to
command in %(name) format. More about formats can be found in Macro Substitution chapter.
Input field can be one of this types:

• Text
• Password
• Number

10.5.3 Macro Substitution
Action, file download, local command, and URL tool types allows macro substitution. Any string starting with percent
sign considered macro name and is expanded. The following macros are recognized:

154 Chapter 10. Object management

NetXMS Administrator Guide, Release 5.2.0

Macro Description
%a IP address of event source object.
%g Globally unique identifier (GUID) of event source object.
%i Unique ID of event source object in hexadecimal form. Always prefixed with 0x and

contains exactly 8 digits (for example 0x000029AC).
%I Unique ID of event source object in decimal form.
%n Name of event source object.
%u IP address of event source object for use in URL. Expands into [addr] for IPv6 and

addr for IPv4.
%U User name of user that launched the object tool from user interface
%v NetXMS server’s version.
%[name] Value returned by script. You should specify name of the script from script library. It’s

possible to specify script entry point separating it by /, e.g. to call a function named
calculate: %[name/calculate]. Script parameters can be specified in brackets,
e.g.: %[name(123,"A textual parameter")]

%{name} Value of custom attribute.
%{name:default_value} Value of custom attribute. If such custom attribute does not exists on a particular node,

default_value is taken. If custom attribute exists, but has empty value, this empty value
is taken.

%(name) Value of input field.
%<name> Parameter with given name.
${local-address} Local IP address for TCP tunnel
${local-port} local port number for TCP tunnel
%% Insert % character.

If object tool called from alarm’s pop-up menu the following additional macros are available:

Macro Description
%A Alarm’s text (can be used only in actions to put text of alarm from the same event pro-

cessing policy rule).
%c Event’s code.
%m Event’s message text (meaningless in event template).
%N Event’s name.
%s

Event’s severity code as number. Possible values are:
• 0 - Normal
• 1 -Warning
• 2 - Minor
• 3 - Major
• 4 - Critical

%S Event’s severity code as text.
%y

Alarm state as number. Possible values are:
• 0 - Outstanding
• 1 - Acknowledged
• 2 - Resolved
• 3 - Terminated

%Y Alarm’s id.

10.5. Object Tools 155

NetXMS Administrator Guide, Release 5.2.0

Internal object tool is special case of object tools. Macro expansions not performed for Internal object tools.
For any unknown macro name system will try to read custom attribute with given name (attribute search is case sensitive).
If attribute with given name not found, empty string will be inserted.

10.5.4 Predefined Object Tools
NetXMS is delivered with a number of predefined Object Tools. Here is the list of them:

Name Type Description Filter
Connect‣Open web
browser

URL Open embedded web browser to node

Connect->Open web
browser (HTTPS)

URL Open embedded web browser to node using
HTTPS

Info->Agent->Loaded
subagents

Agent Table Show information about loaded subagents NetXMS agent
should be available

Info->Agent-
>Configured ICMP
targets

Agent Table Show information about ICMP targets configured
on this agent

NetXMS agent
and ping subagent
should be available

Info->Agent-
>Supported actions

Agent List Show information about actions supported by
agent

NetXMS agent
should be available

Info->Agent-
>Supported lists

Agent List Show list of lists supported by agent NetXMS agent
should be available

Info->Agent-
>Supported metrics

Agent List Show list of metrics supported by agent NetXMS agent
should be available

Info->Agent-
>Supported tables

Agent List Show list of tables supported by agent NetXMS agent
should be available

Info->Current pro-
cesses

Agent Table Show information about currently running pro-
cesses

NetXMS agent
should be available

Info->Routing table
(SNMP)

SNMP Table Show IP routing table NetXMS should
support SNMP

Info->Switch forward-
ing database (FDB)

SNMP Table Show switch forwarding database NetXMS should
support SNMP

Info->Active user ses-
sions

Agent List Show information about active user sessions NetXMS agent
should be available

Info->ARP cache
(Agent)

Agent List Show ARP cache NetXMS agent
should be available

Info->Topology table
(CDP)

SNMP Table Show topology table (CDP) NetXMS should
support SNMP

Info->Topology table
(LLDP)

SNMP Table Show topology table (LLDP) NetXMS should
support SNMP

Info->Topology table
(Nortel)

SNMP Table Show topology table (Nortel protocol) NetXMS should
support SNMP

Restart system Action Restart target node via NetXMS agent NetXMS agent
should be available

Shutdown system Action Shutdown target node via NetXMS agent NetXMS agent
should be available

Wakeup node Internal Wakeup node using Wake-On-LANmagic packet
Restart agent Action Restart NetXMS agent on target node NetXMS agent

should be available

156 Chapter 10. Object management

CHAPTER

ELEVEN

NETWORK DISCOVERY

11.1 Introduction
NetXMS is capable of discovering your network automatically. The network discovery module can operate in two modes:
passive and active.
In passive mode information about new hosts and devices are obtained from ARP tables and routing tables of already
known devices. NetXMS starts with its own ARP cache and routing table.
In active discovery mode the NetXMS server will send an ICMP echo request to all IP addresses in the given range and
consider each responding address for adding to database. If zoning is used the server sends an echo request only in zone 0.
In other zones requests are sent by proxies. For each new device the NetXMS server tries to gather additional information
using the SNMP and NetXMS agent and then adds it to database. By default the NetXMS server will add all discovered
devices to database, but you can limit it by using discovery filters. Default SNMP credentials can be set in Default SNMP
credentials.
The default intervals are 2 hours for active discovery and 15 minutes for passive discovery. These values can be changed
in the Network Discovery configuration. The number of discovery poller threads changes dynamically and is defined by
the server configuration parameters ThreadPool.Discovery.BaseSize and ThreadPool.Discovery.MaxSize.
More information about server configuration parameters can be found at here.

11.2 Configuring Network Discovery
To change network discovery settings, go to the main menu of the management client and choose Configuration ‣ Network
Discovery. The configuration form will open:

157

NetXMS Administrator Guide, Release 5.2.0

11.2.1 General
In this section, you can choose the network discovery mode and choose if the source node of SNMP Trap or syslog source
address should be used for discovery.

11.2.2 Schedule
For passive discovery the interval (in seconds) is selected. For active discovery you cen choose either an interval (in
seconds) or a cron format schedule. See here for more details.

11.2.3 Filter
In this section, you can define a filter for adding new nodes to NetXMS database. Available filtering options are:
No filtering
Any new device found will be added to the database. This is the default setting.
Custom script
You can choose a NXSL script from the Script Library to work as a discovery filter. This custom filtering script will get
an object of class NewNode as its first parameter (special variable $1), and should return true to allow node inclusion into
database.
Automatically generated script
This option can be used if you need only simple filtering. When selected, additional options control what nodes will be
added to database:

Accept node if it has NetXMS
agent

If checked, only nodes with NetXMS agent detected will pass the filter.

Accept node if it has SNMP agent If checked, only nodes with SNMP agent detected will pass the filter.
Accept node if it is within given
range or subnet

Only accept nodes within given address range or subnet. Address ranges can be
configured in Address Filters section.

158 Chapter 11. Network discovery

NetXMS Administrator Guide, Release 5.2.0

Please note that the first two options (NetXMS agent presence and SNMP agent presence) forms OR condition - if both
are checked, any node with either SNMP agent or NetXMS agent will pass. Whereas the address range check and the
first two options forms AND condition - so if a node does pass the agent presence check, but is not in an allowed IP address
range, it will not be accepted. In other words, if all three options are checked, the condition for a new node to pass filter
can be written as following:

if (node has NetXMS agent or node has SNMP agent) and node within given range then pass

11.2.4 Active Discovery Targets
In this section you can define address ranges for active discovery. The NetXMS server will periodically send ICMP echo
requests to these addresses, and consider every responding device for addition to the database. This list has no effect if
active discovery is off.

11.2.5 Address Filters
In this section you can define address ranges for the automatically generated discovery filter. This list has no effect if
discovery is off or the filter is not set to Automatically generated script.

11.2. Configuring Network Discovery 159

NetXMS Administrator Guide, Release 5.2.0

160 Chapter 11. Network discovery

CHAPTER

TWELVE

DATA COLLECTION

12.1 How data collection works
Every node can have many data collection items configured (see Data Collection for detailed description). NetXMS
server has a set of threads dedicated to data collection, called Data Collectors, used to gather information from the nodes
according to DCI configuration. You can control how many data collectors will run simultaneously, by changing server
configuration parameter ThreadPool.DataCollector.MaxSize.
Node capabilities provide information about available sources for data collection in the Overview-> Capabilities section.
The last values of DCIs for the node can be found on theData Collection tab. Additionally, specific DCIs can be displayed
in theOverview` -> Last Values section or as a graph on the Performance tab. More details about DCI display configuration
options can be found in the Other options and Performance View chapters.
All configured DCIs are checked for polling requirement every second. If DCI needs to be polled, appropriate polling
request is placed into internal data polling queue. First available data collector will pick up the request and gather infor-
mation from the node according to DCI configuration. If a new value was received successfully, it’s being stored in the
database, and thresholds are checked. After threshold checking, data collector is ready for processing new request. If
DCI is unsuported it will be polled only every tenth poll, this is not configurable. Processing of a newly received metric
value is outlined on the figure below.

Fig. 1: Newly received metric processing

It is also possibility to push data to server. If DCI source is set to Push, server just waits for new values instead of polling
from a data source.
By default, DCI data is not collected for the duration while connection between server and agent is broken as poll request
would not get to agent. There is special configuration that allows data collection and storage on agent till connection with
server is restored and collected data is pushed to the server thereafter. This option is available for metrics, table metrics
and proxy SNMP metrics as well as implemented for proxy SNMP table metrics and DCIs with custom schedule. In
case of this setup, agent stores DCI configuration locally and does all metric collection and dispatch on its own. DCI
configuration is synchronized on connect, DCI configuration change or SNMP proxy server change. Information about
configuration options can be found here: Agent caching mode.

161

NetXMS Administrator Guide, Release 5.2.0

12.2 DCI configuration
Data collection for a node can be configured using management client. To open data collection tab view, click on node
object in Infrastructure or Network perspective, and click Data Collection tab. You will see the list of configured data
collection items. From here, since DCI configuration and Last values are combined, one can see collected data and
configure new or change existing metrics for monitoring. Right click on an item and all possible configuration options
will be available.
Each DCI have multiple attributes which affects the way data is collected. Detailed information about each attribute is
given below and can be accessed by selecting Edit…, New parameter… or New table….

12.2.1 General

Fig. 2: DCI configuration general property page

162 Chapter 12. Data collection

NetXMS Administrator Guide, Release 5.2.0

Display name
Display name is a free form text string describing DCI. It is not used by the server and is intended for better information
understanding by operators. If you use the Select button to choose a metric from the list, description field will be filled in
automatically.

Metric
Name of the metric of interest, used for making a request to target node. For NetXMS Agent and Internal metrics it
will be metric name, and for SNMP agent it will be an SNMP OID. You can use the Select button for easier selection of
required metric name.
Available agent metric names are obtained during Configuration poll.

Origin
Origin of data (method of obtaining data). Possible single-value origins are:

Source Description
Internal Data generated inside NetXMS server process (server statistics, etc.)
NetXMS Agent Data is collected from NetXMS agent, which should be installed on target node.
SNMP Data is collected via SNMP transport.
Web service Data is obtained from JSON, XML, or plain text retrieved via HTTP/HTTPS
Push Values are pushed by external system (using nxpush, nxapush tools or API), from

NXSL script or log file parser.
Windows Performance counters Data is collected via NetXMS agent running on Windows machine. Windows

Performance counters metric has format Object(Instance)\Counter, e.g. \
LogicalDisk(C:)\Avg. Disk Write Queue Length.

SM-CLP Data is collected via Server Management Command Line Protocol.
Script Value is generated by NXSL script stored in Script Library. Script name and other

options are set in Metric field:
• my_script - will call main() or $main() function from my_script

script library script
• my_script(param1, param2) - will call main() or $main() function
from my_script passing parameters param1, param2 to it

• my_script.my_function - will call my_function() function from
my_script

• my_script.my_function(param1, param2) - will call
my_function() function from my_script passing parameters param1,
param2 to it

SSH Data is obtained from output of ssh command executed through SSH connection.
MQTT Data is obtained by subcribing to MQTT broker topics.
Network Device Driver Some SNMP drivers (e.g. NET-SNMP, RITTAL) provide metrics for data col-

lection. E.g. NET-SNMP provides information about storage this way.
Modbus Data is collected via Modbus-TCP industrial protocol. See Modbus for more in-

formation.
Ethernet/TP Data is collected via Ethernet/TP industrial protocol.

Push Agent origin is different from all others, because it represents DCIs whose values are pushed to server by external
program (usually via nxapush or nxpush command line tool) instead of being polled by the server based on the schedule.
Values can also be pushed from a NXSL script launched on the server.
Possible table metric origins are Internal, NetXMS agent, SNMP, Script. Please refer to description in above table.

12.2. DCI configuration 163

NetXMS Administrator Guide, Release 5.2.0

Data Type
Data type for column. Can be one of the following: Integer, Unsigned Integer, Integer 64-bit, Unsigned Integer 64-bit,
Counter 32-bit, Counter 64-bit, Float (floating point number), or String. Selected data type affects collected data processing
- for example, you cannot use operations like less than or greater than on strings. If you select metric from the
list using the Select button, correct data type will be set automatically.

Units
For user convenience collected DCI values can have the following predefined units assigned, but it is possible to enter
any unit one requires. Most of the units are just displayed after the value, but some of them are special and affect how
collected data is displayed:

Unit Description
% Percent - symbol used to indicate a percentage, a number or ratio as a fraction of

100. For more details please check Wikipedia
°C Degree in Celsius, unit of temperature. For more details please check Wikipedia
°F Degree in Fahrenheit, unit of temperature. For more details please check

Wikipedia
A Ampere, unit of electric current. For more details please check Wikipedia
B (IEC) Bytes in IEC format. Please note that “(IEC)” part will be removed when value

is displayed. For more details on difference between IEC and SI please check
Wikipedia

b (IEC) Bits in IEC format. Please note that “(IEC)” part will be removed when value is
displayed.

B (Metric) Bytes in SI format. Please note that “(Metric)” part will be removed when value
is displayed.

b (Metric) Bits in SI format. Please note that “(Metric)” part will be removed when value is
displayed.

B/s Bytes per second. For more details please check Wikipedia
b/s Bits per second. For more details please check Wikipedia
dBm Unit of power level expressed using a logarithmic decibel. For more details please

check Wikipedia
Epoch time Unix time, measures time by the number of non-leap seconds that have elapsed

since 00:00:00 UTC on 1 January 1970. Converts collected into human readable
timestamp. For more details please check Wikipedia

Hz Hertz, the unit of frequency. For more details please check Wikipedia
J Joule, unit of energy. For more details please check Wikipedia
lm Lumen, a measure of the perceived power of visible light emitted by a source. For

more details please check Wikipedia
lx Lux, unit of illuminance or luminous flux per unit area. For more details please

check Wikipedia
N Newton, unit of force. For more details please check Wikipedia
Pa Pascal, unit of pressure. For more details please check Wikipedia
rpm Revolutions per minute. For more details please check Wikipedia
s Second, unit of time. For more details please check Wikipedia
T Tesla, unit of magnetic flux density. For more details please check Wikipedia
Uptime Measure of system reliability. Converts number of seconds since uptime into hu-

man readable format. For more details please check Wikipedia
W Watt, unit of power or radiant flux. For more details please check Wikipedia
V Volt, electric potential between two points of a conducting wire. For more details

please check Wikipedia
Ω Ohm, unit of electrical resistance. For more details please check Wikipedia

164 Chapter 12. Data collection

http://en.wikipedia.org/wiki/Percent_sign
http://en.wikipedia.org/wiki/Celsius
http://en.wikipedia.org/wiki/Fahrenheit
http://en.wikipedia.org/wiki/Ampere
http://en.wikipedia.org/wiki/Kilobyte
http://en.wikipedia.org/wiki/Data-rate_units
http://en.wikipedia.org/wiki/Data-rate_units
http://en.wikipedia.org/wiki/DBm
http://en.wikipedia.org/wiki/Unix_time
http://en.wikipedia.org/wiki/Hertz
http://en.wikipedia.org/wiki/Joule
http://en.wikipedia.org/wiki/Lumen_%28unit%29
http://en.wikipedia.org/wiki/Lux
http://en.wikipedia.org/wiki/Newton_%28unit%29
http://en.wikipedia.org/wiki/Pascal_%28unit%29
http://en.wikipedia.org/wiki/Revolutions_per_minute
http://en.wikipedia.org/wiki/Second
http://en.wikipedia.org/wiki/Tesla_%28unit%29
http://en.wikipedia.org/wiki/Uptime
http://en.wikipedia.org/wiki/Watt
http://en.wikipedia.org/wiki/Volt
http://en.wikipedia.org/wiki/Ohm

NetXMS Administrator Guide, Release 5.2.0

Use multipliers
This boolean setting gives convenience of displaying somemeasurements in more readable form. For example, if enabled,
1230000 becomes 1.23 M. Please note - setting has no effect on units “%”, “°C”, “°F”, “dBm” and “rpm”. Everything
with (IEC) will use binary multipliers both for calculation and to display value. This setting is taken into consideration
only to display value; it is not converting value in the database. Selection here will be taken to format value when macro
%<{format-specifier}name> with formatting is used. In Other options property page it is possible to set fixed multiplier
degree. Again, it is used for display purposes only, however will be used when macro %<{format-specifier}name> is
used.

Source node override
Source node of metrics collection. This can be used when other node provides information about current node. In this
way, platform provides additional flexibility of where metrics collection is taking place.
Other example of usage is virtual nodes (nodes with IP 0.0.0.0). In this case, node state can be obtained from the DCI
created on current node, but collected from the other one.
Data is collected from the current node if no value is set.

Collection schedule
Polling mode and interval describe schedule type and interval between consecutive polls, in seconds. However, collecting
too many values for too long will lead to significant increase of your database size and possible performance degradation.
Following options can be selected:

• Server default interval - default value will be taken from DataCollection.DefaultDCIPollingInterval server configu-
ration parameter.

• Custom interval - Allows to enter a custom value. This field supports macro resolution, so e.g. you can use
%{polling_interval:600} macro that will take value of polling_interval custom attribute or 600, if such cus-
tom attribute is not present on the node.

• Advanced scheduling - schedules configured in Custom Schedule page will be used.
If you turn on Advanced Schedule flag, additional link to Custom Schedulewill appear and, once configured, server will use
custom schedule for collecting DCI values instead of fixed intervals. Advanced schedule consists of one or more records;
each representing desired data collection time in cron-style format.
See Cron format for supported cron format options.
For DCI Collection schedule it’s possible to specify optional sixth (first from left) cron field for resolution in seconds. It’s
not recommended to use seconds in custom schedules as your main data collection strategy though. Use seconds only if
it is absolutely necessary.

History retention period
This attribute specifies how long the collected data should be kept in database, in days. Minimum retention time is 1 day
and maximum has not limit. However, keeping too many collected values for too long may lead to significant increase of
your database size and possible performance degradation.
Following options can be selected:

• Server default - default value will be taken from DataCollection.DefaultDCIRetentionTime server configuration pa-
rameter.

• Custom - Allows to enter a custom value. This field supports macro resolution, so for example you can use %{stor-
age_period:30} macro that will take value of storage_period custom attribute or 30 if such custom attribute is
not present on the node.

• Do not save collected data to database - will not save collected data to database, but will store last value in memory

12.2. DCI configuration 165

NetXMS Administrator Guide, Release 5.2.0

Last option is used when it is required to show latest (every 1 second collected) data on Dashboard, however it would result
in excessive data stored in database. So, 2 DCI configurations are created - one to store historical data collected once per
minute and the second one, that is not stored in database, but is collected every second and displayed on dashboards in
close to real time.

• Save only changed values - if enabled, value is saved to the database only if it differs from last saved value.

12.2.2 Cluster
This section is available only for DCI’s collected on cluster.

Fig. 3: DCI configuration cluster property page

166 Chapter 12. Data collection

NetXMS Administrator Guide, Release 5.2.0

Associate with cluster resource
In this field one can specify cluster resource associated with DCI. Data collection and processing will occur only if node,
you configured DCI for, is current owner of this resource. This field is valid only for cluster member nodes.

Data aggregation
This section specifies how cluster data aggregation is done. Aggregate values from cluster nodes option means that DCI
from cluster will be collected on each node separately and aggregated on cluster using one of the aggregation options.
Aggregation options:

• Total
• Average
• Min
• Max

12.2.3 Data Transformations
In simplest case, NetXMS server collects values of specified metrics and stores them in database. However, you can also
specify various transformations for original value. For example, you may be interested in a delta value, not in a raw value
of some metric. Or, you may want to have metric’s value converted from bytes to kilobytes. All transformations will take
place after receiving new value and before threshold processing.
Data type after transformation - drop down menu of required data type.
Data transformation consists of two steps. In the first step, delta calculation is performed. You can choose four types of
delta calculation:

Function Description
None No delta calculation performed. This is the default setting for newly created DCI.
Simple Resulting value will be calculated as a difference between current raw value and previous raw value. By

raw value it is meant the metric’s value originally received from host.
Average
per second

Resulting value will be calculated as a difference between current raw value and previous raw value,
divided by number of seconds passed between current and previous polls.

Average
per minute

Resulting value will be calculated as a difference between current raw value and previous raw value,
divided by number of minutes passed between current and previous polls.

In second step, custom transformation script is executed (if present). By default, newly created DCI does not have a
transformation script. If transformation script is applied, the resulting value of the first step is passed to the transformation
script as a parameter; and a result of script execution is the final DCI value. Transformation script gets original value
as first argument (available via special variable $1), and also has two predefined global variables: $node (reference to
current node object), and $dci (reference to current DCI object).
In case of table DCIs, $1 special variable is an object of type Table.
For more information about NetXMS scripting language, please refer to Scripting chapter in this manual.
Transformation script can be tested in the same view, by clicking Test… and entering test input data.

12.2. DCI configuration 167

NetXMS Administrator Guide, Release 5.2.0

Fig. 4: DCI configuration transformation property page

12.2.4 Thresholds
For every DCI you can define one or more thresholds. For each threshold there is a pair of condition and event - if
condition becomes true, associated event is generated. To configure thresholds, open data collection Edit… mode for
node or template DCI. You can add, modify and delete thresholds using buttons below the threshold list. If you need to
change the threshold order, select one threshold and use arrow buttons located on the right to move the selected threshold
up or down.

168 Chapter 12. Data collection

NetXMS Administrator Guide, Release 5.2.0

Fig. 5: DCI configuration threshold property page

12.2. DCI configuration 169

NetXMS Administrator Guide, Release 5.2.0

Threshold Processing

Fig. 6: Threshold processing algorithm

As you can see from above flowchart, threshold order is very important. Let’s consider the following example: you
have DCI representing CPU utilization on the node, and you wish two different events to be generated - one when CPU
utilization exceeds 50%, and another one when it exceeds 90%. What happens when you place threshold > 50 first, and
> 90 second? The following table shows values received from host and actions taken by monitoring system (assuming
that all thresholds initially unarmed):

Value Action
10 Nothing will happen.
55 When checking first threshold (> 50), the system will find that it’s not active, but condition evaluates to true.

So, the system will set threshold state to “active” and generate event associated with it.
70 When checking first threshold (> 50), the system will find that it’s already active, and condition evaluates to

true. So, the system will stop threshold checking and will not take any actions.
95 When checking first threshold (> 50), the system will find that it’s already active, and condition evaluates to

true. So, the system will stop threshold checking and will not take any actions.

Please note that second threshold actually is not working, because it is masked by the first threshold. To achieve desired
results, you should place threshold > 90 first, and threshold > 50 second.
You can disable threshold ordering by checking Always process all thresholds checkbox. If enabled, system will always
process all thresholds.

170 Chapter 12. Data collection

NetXMS Administrator Guide, Release 5.2.0

Threshold Configuration
When adding or modifying a threshold, you will see the following dialog:

First, you have to select what value will be checked:

12.2. DCI configuration 171

NetXMS Administrator Guide, Release 5.2.0

Last polled value The last value will be used. If number of polls is set to more then 1, then condition
will evaluate to true only if it’s true for each individual value of last N polls.

Average value Average value for last N polls will be used (you have to configure required number
of polls).

Mean deviation Mean absolute deviation for last N polls will be used (you have to configure re-
quired number of polls). Additional information on how mean absolute deviation
is calculated can be found here.

Diff with previous value Delta between the last and previous values will be used. If DCI data type is string
and the last and previous values match, system will use 0, and if they don’t - 1.

Data collection error An indicator of data collection error. Instead of DCI’s value, system will use 0 if
data collection was successful, and 1 if there was a data collection error. You can
use this type of thresholds to catch situations when DCI’s value cannot be retrieved
from agent.

Sum of values Sum DCI values for the number of samples specified and will compare it with the
value. Side note - in THRESHOLD_REACHED there are two parameters - one
is last DCI value and the other is value calculated by the threshold, and if number
of samples is >1, then these values can be different.

Script This will enable script editor, so one can make a script that makes a decision. If it
returns true it means to trigger the threshold, if false - rearm threshold. There are
some variables available inside the script, $dci, $1 etc. Value input field (which is
below Samples) can be read from there, which can be convenient, as one can still
use this field to store some threshold value.

Absolute deviation Similar to mean deviation - will take number of datapoints specified in Samples
and calculate deviation from these.

Anomaly If checkbox “Detect anomalies” is selected, server will use Isolation Forest algo-
rithm to check if new value is an outlier within two set of data points - all values
within 30 minutes of current time of the day for last 30 days, and all values within
30 minutes around current time of the day on the same day of the week for last
10 weeks. If new data point is classified as outlier in both data sets, DCI will be
marked as having anomalous value. Using this setting may adversely affect your
database performance. This is an experimental feature - use with caution.

Second, you have to select comparison function. Please note that not all functions can be used for all data types. Below
is a compatibility table:

Type/Function Integer Unsigned
Integer

Counter
32-bit

Integer
64-bit

Unsigned
Integer
64-bit

Counter
64-bit

Float String

Less X X X X X X X
Less or equal X X X X X X X
Equal X X X X X X X X
Greater or equal X X X X X X X
Greater X X X X X X X
Not equal X X X X X X X X
Like X
Not like X
Like (ignore case) X
Not like (ignore case) X

Third, you have to set a value to check against. If you use like or not like functions, value is a pattern string where
you can use meta characters - asterisk (*), which means “any number of any characters”, and/or question mark (?), which

172 Chapter 12. Data collection

http://en.wikipedia.org/wiki/Mean_deviation
https://en.wikipedia.org/wiki/Isolation_forest

NetXMS Administrator Guide, Release 5.2.0

means “any character”.
If you use numeric threshold value, the following multipliers are supported: K, M, G, T, Ki, Mi, Gi, Ti. So, e.g. instead
of value “1000000000” you can put “1G” into the Value field.
Fourth, you have to select events to be generated when the condition becomes true or returns to false. By default, system
uses SYS_THRESHOLD_REACHED and SYS_THRESHOLD_REARMED events, but in most cases you will change it to your
custom events.
You can also configure threshold to resend activation event if threshold’s condition remain true for specific period of time.
You have three options - default, which will use server-wide settings, never, which will disable resending of events, or
specify interval in seconds between repeated events.

Thresholds and Events
You can choose any event to be generated when threshold becomes active or returns to inactive state. However, you
should avoid using predefined system events (their names usually start with SYS_ or SNMP_). For example, you may set
event SYS_NODE_CRITICAL to be generated when CPU utilization exceeds 80%. System will generate this event, but it
will also generate the same event when node status will change to CRITICAL. In your event processing configuration, you
will be unable to determine actual reason for that event generation, and probably will get some unexpected results. If you
need custom processing for specific threshold, you should create your own event first, and use this event in the threshold
configuration. NetXMS has some preconfigured events that are intended to be used with thresholds. Such event names
start with DC_.
System will pass the following parameters to events generated as a reaction to single-value DCI threshold violation:

Param-
eter
number

Named parameter Description

1 dciName Data collection item name
2 dciDescription Data collection item description
3 thresholdValue Threshold value
4 currentValue Current value (e.g. average for several samples for averaging threshold) that

is compared to threshold value
5 dciId Data collection item ID
6 instance Instance
7 isRepeatedEvent Repeat flag
8 dciValue Last collected DCI value
9 operation Threshold’s operation code
10 function Threshold’s function code
11 pollCount Threshold’s required poll count
12 thresholdDefinition Threshold’s textual definition

Event parameters can be accessed by number or by name via macros to form event message. For example, if you are
creating a custom event that is intended to be generated when file system is low on free space, and wish to include file
system name, actual free space, and threshold’s value into event’s message text, you can use message template like this:

File system %<instance> has only %<currentValue> bytes of free space (threshold:

%<thresholdValue> bytes)

For table threshold violation the following parameters are passed to generated events:

12.2. DCI configuration 173

NetXMS Administrator Guide, Release 5.2.0

Param-
eter
number

Named parameter Description

1 dciName Table DCI name
2 dciDescription Table DCI description
3 dciId Table DCI ID
4 row Table row
5 instance Instance

For events generated on threshold’s return to inactive state (default event is SYS_THRESHOLD_REARMED), event parameter
list is different:

Param-
eter
number

Named parameter Description

1 dciName Data collection item name
2 dciDescription Data collection item description
3 dciId Data collection item ID
4 instance Instance
5 thresholdValue Threshold value
6 currentValue Current value (e.g. average for several samples for averaging threshold) that

is compared to threshold value
7 dciValue Last collected DCI value
8 operation Threshold’s operation code
9 function Threshold’s function code
10 pollCount Threshold’s required poll count
11 thresholdDefinition Threshold’s textual definition

For table DCI threshold rearm the following parameters are passed to generated events:

Param-
eter
number

Named parameter Description

1 dciName Table DCI name
2 dciDescription Table DCI description
3 dciId Table DCI ID
4 row Table row
5 instance Instance

12.2.5 Instance
Each DCI has an Instance attribute, which is a free-form text string, passed as a 6th parameter to events associated with
thresholds. You can use this parameter to distinguish between similar events related to different instances of the same
entity. For example, if you have an event generated when file system was low on free space, you can set the Instance
attribute to file system mount point.
Sometimes you may need to monitor multiple instances of some entity, with exact names and number of instances not
known or different from node to node. Typical example is file systems or network interfaces. To automate creation of
DCIs for each instance, you can use instance discovery mechanism. First you have to create “master” DCI. Create DCI as

174 Chapter 12. Data collection

NetXMS Administrator Guide, Release 5.2.0

usual, but in places where normally you would put instance name, use the special macro {instance}. Then, go to Instance
Discovery tab in DCI properties, and configure instance discovery method and optionally filter script.
Instance discovery creates 2 macros for substitution:

• {instance} - instance name
• {instance-name} - instance user-readable description

Fig. 7: DCI configuration instance discovery property page

12.2. DCI configuration 175

NetXMS Administrator Guide, Release 5.2.0

Instance Discovery Methods
The following instance discovery methods are available:

Method Input Data Description
Agent List List name Read list from agent and use it’s values as instance names.
Agent Table Table name Read table from agent and use it’s instance column values as instance

names. If there are several instance columns in that table, a concatena-
tion of values will be used, separated by ~~~ (three tilda characters).

SNMP Walk - Values Base OID Do SNMP walk starting from given OID and use values of returned
varbinds as instance names.

SNMP Walk - OIDs Base OID Do SNMP walk starting from given OID and use IDs of returned
varbinds as instance names.

Script Script name Instance names are provided by a script from script library. The script
should return an array (with elements representing instance names)
or a map (keys represent instance names and values represent user-
readable description)

Windows Performance
Counters

Object name,
e.g. Logi-

calDisk.

Instances of given object will be taken.

Web Service Defini-
tion:path

Web service request field contains web service definition name with
optional arguments and path to the root element of the document
where enumeration will start. Each sub-element of given root ele-
ment will be considered separate instance.

Internal Table Table name ReadNetXMS server internal table and use it’s instance column values
as instance names. If there are several instance columns in that table,
a concatenation of values will be used, separated by ~~~ (three tilda
characters).

Instance Discovery Filter Script
You can optionally filter out unneeded instances, transform instance names and add user-readable description using fil-
tering script written in NXSL. Script will be called for each instance and can return either a binary value or an array.
If binary value is returned, it has the following meaning: TRUE (to accept instance), FALSE (to reject instance).
If an array is returned, then instance is counted as accepted. Only first element of the array is mandatory, the rest elements
are optional (but to include an element, all preceding elements should be included). Array structure:

Data type Description
String Instance name, that will be available as {instance} macro.
String Instance user-readable description, that will be available as {instance-name} macro
NetObj Object connected with this DCI

12.2.6 Performance view
This section provides configuration options for displaying DCI values as line charts on the Performance tab. Various
options are available to visually represent the collected data; see Data and Network visualization for more details.

Note

Note: Not available for table metrics.

176 Chapter 12. Data collection

NetXMS Administrator Guide, Release 5.2.0

Fig. 8: DCI configuration instance discovery property page

Multiple DCIs can be grouped in one graph. To group them use the same group name in “Group” field.

12.2.7 Access Control
This page provides access control management option to each DCI. If no user set, then access rights are inherited from
node. So any user that is able to read node is able to see last value of this DCI and user that is able to modify node is able
to change and see DCI configuration. When list is not empty, then both access to node and access to DCI are check on
DCI configuration or value request.

12.2. DCI configuration 177

NetXMS Administrator Guide, Release 5.2.0

Fig. 9: DCI configuration access control property page

12.2.8 SNMP
SNMP page provides additional options for SNMP data collection or processing. Like: how to interpret collected SNMP
octet string or to use custom port or version for data collection.

178 Chapter 12. Data collection

NetXMS Administrator Guide, Release 5.2.0

12.2.9 Windows Performance Counters

12.2. DCI configuration 179

NetXMS Administrator Guide, Release 5.2.0

12.2.10 Other options
Other available options:

• Show last value in object tooltip - shows DCI last value on tooltip that is shown on network maps.
• Show last value in object overview - shows DCI last value on Overview->Last Values page.
• Use this DCI for node status calculation - Uses value returned by this DCI as a status, that participate in object
status calculation. Such kind of DCI should return integer number from 0 till 4 representing object status.

• Related object - object that is related to collected DCI. Related object can be set by instance discovery filter script
and accessed in NXSL from DCI object.

Fig. 10: DCI configuration other option property page

12.2.11 Comments
This configuration page can be used freely for text comments to add additional notes about DCI configuration or usage.
These comments are added to alarms created from threshold violation events. For example, they can be used to inform
operators about problem-solving approaches.

12.3 Push metrics
NetXMS gives you ability to push DCI values when you need it instead of polling them on specific time intervals. To be
able to push data to the server, you should take the following steps:

1. Set your DCI’s origin to Push Agent and configure other properties as usual, excluding polling interval which is
meaningless in case of pushed data.

180 Chapter 12. Data collection

NetXMS Administrator Guide, Release 5.2.0

2. Create separate user account or pick an existing one and give “Push Data” access right on the DCI owning node to
that user.

3. Use nxapush or nxpush utility or client API for pushing data.

12.4 DCI types
12.4.1 Single-value DCIs
Single-value metrics, as the name suggests, collect only one data value.

12.4.2 Table DCIs
Table metrics can collect data in bulk, effectively encapsulating multiple values that can be collected simultaneously.

Fig. 11: Table example

They’re primarily used when it is necessary to gather bulk data, like data sets that can be acquired together or for atomic
collection. Atomic collection is when you need to take a data snapshot that consists of multiple items collected at the
exact same time. By right-click on string or non string value one can access history, and line chart builds are possible for
non string values.
There are distinct benefits to using table metrics. But they’re not without their disadvantages. As tables are not single
values, they require more storage, which can be one of the potential drawbacks.
Furthermore, the threshold configuration can be more complicated for table metrics because they have multiple rows and
columns.
Unlike a single value where you can easily specify a threshold for when something is wrong, with a table, you have to
specify which instance or item in a column has an issue.

12.4. DCI types 181

NetXMS Administrator Guide, Release 5.2.0

12.4.3 List DCIs
Usually DCIs have scalar values. A list DCI is a special DCI which returns a list of values. List DCIs are mostly used
by NetXMS internally (to get the list of network interfaces during the configuration poll, for example), but can also be
utilized by user in some occasions. NetXMS Management Client does not support list DCIs directly, but their names are
used as input parameters for Instance Discovery methods. List DCI values can be also obtained with nxget command
line utility (e.g. for use in scripts).

12.5 Agent caching mode
Agent caching mode allows metric data to be obtained for the time being while connection between server and agent have
been broken. This option is available for metrics, table metrics and proxy SNMPmetrics as well as for proxy SNMP table
metrics and DCIs with custom schedule. In absence of connection to the server, collected data is stored on agent and once
connection is restored, data is sent to server. Detailed description can be found there: How data collection works.
Agent side cache is configurable globally, on node and DCI levels. Configuration can be changed separately on each level.
By default it’s off.
All collected data goes thought all transformations and thresholds only when it comes to server. In order to prevent
generation of old events, one can set DataCollection.OfflineDataRelevanceTime configuration variable to time period in
seconds within which received offline data still relevant for threshold validation. By default it is set to 1 day.

12.5.1 Configuration
Agent cache mode can be configured:

• globally - set configuration parameter Agent.DefaultCacheMode to on or off in Configuration perspective -> Server
configuration.

• on node level - Agent cache mode can be changed to on, off or default (use global settings). Right click on a node
in Infrastructure perspective and select Properties followed by Polling page.

• on DCI level - Agent cache mode can be changed to on, off or default (use node level settings) in DCI properties
on Other Options page.

12.6 Data Collection tab
Data Collection tab provides information about all data collected on a node: DCI last value, last collection timestamp and
threshold status.
It is possible to check last values or raw last values in textual format or as a chart by right clicking on DCI and selecting
corresponding display format.

182 Chapter 12. Data collection

NetXMS Administrator Guide, Release 5.2.0

Click on Edit mode to obtain more detaled view.

12.6.1 DCI table creation example
Encapsulating earlier covered configuration options - in Data Collection tab view one can, for example, create DCI table
with Agent cache mode enabled in the following way:

1. Create new table by right click in Data Collection tab view followed by selecting New table….
2. Select Origin on General page as NetXMS Agent (default option) and table metrics from Table Selection pop-up

view when clicking on Metric selector.

12.6. Data Collection tab 183

NetXMS Administrator Guide, Release 5.2.0

Note

Pop up view from Metric selector may be different for other sources in Origin.
Currently supported DCI table sources are:

• Internal
• NetXMS Agent
• SNMP
• Script

Currently supported DCI table sources with agent cache enabled:
• NetXMS Agent
• SNMP

Currently supported DCI table sources with agent cache and proxy enabled:
• NetXMS Agent
• SNMP

3. Configure agent catching mode as per instructions above.

12.6.2 Status
DCI status can be one of the following: Active, Disabled, Not Supported. Server will collect data only if the status is Active.
If you wish to stop data collection without removing DCI configuration and collected data, the Disabled status can be set
manually. If requested metric is not supported by target node, the Not Supported status is set by the server.

184 Chapter 12. Data collection

NetXMS Administrator Guide, Release 5.2.0

12.7 Templates
12.7.1 What is template
Often you have a situation when you need to collect same metrics from different nodes. Such configuration making may
easily fall into repeating one action many times. Things may became even worse when you need to change something in
already configured DCIs on all nodes - for example, increase threshold for CPU utilization. To avoid these problems, one
can use data collection templates. Data collection template (or just template for short) is a special object, which can have
DCIs configured and grouped for similar or logical purposes and applied to relevant node or node group (for example,
Collector or Cluster in Infrastructure perspective). Templates can be accessed from Template perspective.

When you create template and configure DCIs for it, nothing happens - no data collection will occur. Then, you can
apply this template to one or multiple nodes - and as soon as you do this, all DCIs configured in the template object will

12.7. Templates 185

NetXMS Administrator Guide, Release 5.2.0

appear in the target node objects, and server will start data collection for these DCIs. If you then change something in
the template data collection settings - add new DCI, change DCI’s configuration, or remove DCI - all changes will be
reflected immediately in all nodes associated with the template. You can also choose to remove template from a node.
In this case, you will have two options to deal with DCIs configured on the node through the template - remove all such
DCIs or leave them, but remove relation to the template. If you delete template object itself, all DCIs created on nodes
from this template will be deleted as well.
Please note that you can apply unlimited number of templates to a node - so you can create individual templates for each
group of metrics (for example, generic performance metrics, MySQLmetrics, network counters, etc.) and combine them,
as per your business requirements.

12.7.2 Creating template
To create a template, right-click on Template Root or Template group object in Template perspective, and click Create ‣
Template. Enter a name for a new template and click OK.

12.7.3 Configuring templates
To configure DCIs in the template, click on Template object in the Template perspective, then right-click inData Collection
tab view and select New parameter… or New table… for further data collection configuration. You can configure DCIs
in the same way as the node objects. Another way to apply configuration in Template - create DCI in Infrastructure or
Network perspective and convert it to template item, as seen below.

12.7.4 Applying template to node
To apply a template to one or more nodes, right-click on template object in Template perspective and select Apply to….
Pop-up menu will appear with objects in Infrastructure and Network perspectives available for selection. Select objects
that you wish to apply template to, and clickOK (you can select multiple nodes in the list by holding Control key). Please
note that if data collection editor is open for any of the target nodes, either by you or another administrator, template
applying will be delayed until data collection editor for that node will be closed. Another way to apply template to object
- in Infrastructure or Network perspectives select one or more objects, right-click and select Apply template…

186 Chapter 12. Data collection

NetXMS Administrator Guide, Release 5.2.0

12.7.5 Removing template from node
To remove a link between template and node, right-click on Template object in Template perspective and select Remove
from…. Pop-up menu will appear with objects, which are having the template in question already applied. Select objects
that you wish to remove template from, and click OK.

Another way to remove template from object - in Infrastructure or Network perspective select one or more objects, right-
click and select Remove template…. Pop-up window will appear with all applied templates to objects. Select templates to
be removed and click OK.
If you select Unbind DCIs from template, all DCIs related to template will remain configured on a node, but association
between the DCIs and template will be removed. Any further changes to the template will not be reflected in these DCIs.
If you later reapply the template to the node, you will have two copies of each DCI - one standalone (remaining from
unbind operation) and one related to template (from new apply operation). Selecting Remove DCIs from node will remove
all DCIs associated with the template. After you click OK, node will be unbound from template.

12.7.6 Macros in template items
You can use various macros in name, description, and instance fields of template DCI. These macros will be expanded
when template applies to node. Macro started with %{ character combination and ends with } character. The following
macros are currently available:

12.7. Templates 187

NetXMS Administrator Guide, Release 5.2.0

Macro Expands to
node_id Node unique id
node_name Node name
node_primary_ip Node primary IP address
script:name String returned by script name. Script should be stored in script library

(accessible via Configuration ‣ Script Library). Inside the script, you can
access current node’s properties via $node variable.

For example, if you wish to insert node’s IP address into DCI description, you can enter the following in the description
field of template DCI:

My IP address is %{node_primary_ip}

When applying to node with primary IP address 10.0.0.1, on the node will be created DCI with the following description:
My IP address is 10.0.0.1

Please note that if you change something in the node, name for example, changes will not be reflected automatically
in DCI texts generated from these macros. However, they will be updated if you reapply template to the node or on
housekeeper run.

12.8 Working with collected data
Once you setup DCI, data starts collecting in the database. You can access this data and work with it in different ways.
Data can be visualized in three ways: in graphical form, as a historical view(textual format) and as DCI summary table,
this layout types can be combined in Dashboards. More detailed description about visualization and layout can be found
there: Data and Network visualisation.

188 Chapter 12. Data collection

CHAPTER

THIRTEEN

EVENT PROCESSING

13.1 Introduction
NetXMS is event based monitoring system. Events can come from different sources - polling processes (status, config-
uration, discovery), data collection, SNMP traps, from NXSL scripts and directly from external applications via client
library. All events are forwarded to NetXMS Event Queue.
NetXMS Event Processor can process events from Event Queue in either sequential or parallel mode. In sequential mode
events are processed one-by-one which guarantees that events will be processed in the same sequence as they arrive into
the queur. For installation where a lot of events could be generated in a short period of time this mode can be a bottleneck.
Parallel processing mode allows to process events in several parallel threads, thus allowing to scale horizontally and to
increase processing performance. Number of threads for parallel processing is set by Events.Processor.PoolSize server
configuration parameter.
Event Processing Rules can read/write persistent storage and custom attributes, create/terminate alarms, can run scripts
that are checking other node statuses and care should be taken to ensure that no race condition would occur when per-
forming parallel processing.
Correct operation is ensured by properly setting Events.Processor.QueueSelector server configuration parameter. This
parameter contains macros that are expanded when an event is created. Events that have same QueueSelector string will
be processed sequentially by one and the same event processing thread, thus ensuring that there will be no race condition
between these events.

13.2 Event Processing Policy
Actions taken by event processor for any specific event are determined by a set of rules called Event Processing Policy
(EPP).
Every rule has two parts - matching part (called Condition in the rule configuration dialog), which determines if the rule
is applicable to an event, and action part, which defines actions to be taken for matched events.
Each event passes through all rules in the policy, so if it matches more than one rule, actions specified in all matched rules
will be executed. You can change this behavior by setting Stop Processing flag on a rule. If this flag is set for a rule and
that rule is matched, subsequent rules (with higher rule number) will not be processed.
Event Processing Policy rules are managed using Event Processing Policy Editor available in Configuration –> Event Pro-
cessing Policy.
Only one user of NetXMS server can access Event Processing Policy Editor window at a time. Other users will receive
Component locked error message when attempting to open this window.
Changes made in Event Processing Policy Editor are applied at the moment when Save button is clicked.

189

NetXMS Administrator Guide, Release 5.2.0

Fig. 1: Event Processing Policy Screen

To expand or collapse a rule, double click on its title or use Expand/collapse button on the right hand side of rule title.
Event Processing Policy Editor window toolbar buttons have the following meaning (from left to right): Add new rule,
Save changes, Expand all, Collapse all, Horizontal layout, Vertical layout, Cut rule, Copy rule, Paste rule, Delete rule.
To create event policy rule, right click on entry before or after which new Event Processing Policy should appear and
select Insert before or Insert after. Drag and drop can be used for rule reorganization.

Fig. 2: Event Processing Policy item context menu

To edit Event Processing Policy’s properties, click edit button in right corner of an entry, or double-click text in Filter or
Action text.

190 Chapter 13. Event processing

NetXMS Administrator Guide, Release 5.2.0

Fig. 3: Edit buttons

Properties of Event Processing Policy rule have the following sections:

13.2. Event Processing Policy 191

NetXMS Administrator Guide, Release 5.2.0

Section Description
Condition Sub-sections ofCondition section determine if the rule is applicable to a particular

event. If checkbox Rule is disabled is set, this rule is ignored. Checkbox Accept
correlated events defines, if events, which are correlated to another events should be
processed (e.g. when when node is in maintenance, all node events are correlated
to the maintenance event).

Condition –> Events Event code. This field can be left empty, which matches any event, or contain list
of applicable events. Inverse rule checkbox allows to react to all events except to
thouse listed.

Condition –> Source Objects Source objects and exclusions lists allow to specify for which objects this rule is
applicable. If source objects list is empty, rule would match any object.
Multiple objects can be specified in the lists. If you specify subnet, container,
collector, cluster, rack or chassis, any object within it will also be matched.
If one and the same object is present both in source objects and exclusions, exclu-
sions list has priority. E.g. you can specify a container in source objects and one
specific node from that container in exclusions list - rule would match all nodes
from that container except that one specified node.
Inverse rule checkbox allows to invert the logic, so objects that would be matched
by given combination of source objects and exclusions will not be matched and
vice versa.

Condition –> Time Filter Allows to specify time frames when rule should be matched. Time frames allow
to specify time range, days of week, days of month and months. Days of month
are specified as comma-separated lists of days or ranges, e.g. 1,3,5,20-25. Letter
L denotes last day of month.

Condition –> Severity Filter Event’s severity. This field contains selection of event severities to be matched.
Condition –> Filtering Script Optional matching script written in NXSL. If this field is empty (or only contains

comments according to NXSL language specification), no additional checks are
performed. Otherwise, the event will be considered as matched only if the script
returns boolean true (or other value that is considered true in NXSL language,
e.g. non-zero number or array). For more information about NetXMS scripting
language please refer to the chapter Scripting in this manual.
Note: Script execution is a blocking operation - event processor will wait for the
script to complete. Make sure that script is written in a way that it would execute
quickly.

Action Sub-sections of Action section determine what actions are performed if an event
meets all conditions of a rule. If checkbox Stop event processing is set, then sub-
sequent rules (with higher rule number) will not be processed for a given event.
However, actions of given rule will be performed.

Action –> Alarm Action in regard to alarms. Alarm can be created, resolved or terminated or no
action to alarms is done. See Generating and Terminating Alarms from EPP for
more information.

Action –> Downtime Control Allows to add records to downtime_log table in the DB which can later be used
to generate downtime report using the reporting engine. Downtime tag allows to
specify several types of downtime for one and the same object. When closing a
downtime record, system will search for open record with same downtime tag.
Downtime tag is 15 characters in length, macros are not supported in this field.

Action –> Persistent Storage NXLS Persistent Storage action like add/update or delete can be performed.
Action –> Custom Attributes Actions with Custom attributes like add/update or delete can be performed.
Action –> Server Actions List of predefined actions to be executed. Action execution could be delayed with

ability to cancel a delayed action later on. Execution of action could be snoozed
for a specified period of time. For action configuration refer to Actions chapter.
Delayed execution and snoozing is controlled using timers which can be referred
to using timer key. This allows cancelling a timer or checking, if its still running
from NXSL script.

Action –> Script Script writen in NXSL.
Note: Script execution is a blocking operation - event processor will wait for the
script to complete. Make sure that script is written in a way that it would execute
quickly. If you need to execute a long-running script, create Execute NXSL script
action and execute it from EPP rule.

Action –> Timer Cancellations List of timers to cancel identified by timer keys. This allows to cancel delayed
actions and snooze/blocking timers.

Comments Rule comment which can be multi-line text. The comment is displayed as a name
of the rule.

192 Chapter 13. Event processing

NetXMS Administrator Guide, Release 5.2.0

After all manipulations are done - save changes by pressing save icon.

13.2.1 Examples
This rule defines that for every major or critical event originated from a node named “IPSO” two e-mail actions will be
executed.

Fig. 4: Example 1

13.3 Events

13.4 Alarms
13.4.1 Alarms Overview
As a result of event processing some events can be shown up as alarms. Usually alarm represents something that needs
attention of network administrators or network control center operators, for example low free disk space on a server.
All alarm events are logged to alarm log. The number of days the server keeps alarm history can be configured by
“AlarmHistoryRetentionTime” server configuration parameter. Alarm log can be viewed in “Alarm Log View”(Alt+F8).
This view gives option to query for required information from alarm log.

13.3. Events 193

NetXMS Administrator Guide, Release 5.2.0

Every alarm has the following attributes:

Attribute Description
Creation time Time when alarm was created.
Last change time Time when alarm was last changed (for example, acknowledged).
State Current state of the alarm, see table bellow
Message Message text (usually derived from originating event’s message text).
Severity Alarm’s severity - Normal,Warning, Minor, Major, or Critical.
Source Source node (derived from originating event).
Key Text string used to identify duplicate alarms and for automatic alarm termination.

Possible alarm states:

194 Chapter 13. Event processing

NetXMS Administrator Guide, Release 5.2.0

Outstanding New alarm.
Acknowledged When network administrator sees an alarm, hemay acknowledge it to indicate that some-

body already aware of that problem and working on it. A new event with the same alarm
ID will reset the alarm state back to outstanding

Sticky Acknowledged for
time

Alarm will remain acknowledged for given time interval even after newmatching events,
after timewill pass alarmwill bemoved to outstanding state. This option can be used like
snooze. When you know that there will be new matching events, but it will not change
the situation. But after some time someone should check this problem. For example,
if you have problem that cannot be solved until next week, so this alarm can be sticky
acknowledged for 7 days. After 7 days this problem again will be in outstanding state.
This type of acknowledge can be disabled by changing EnableTimedAlarmAck server
configuration parameter.

Sticky Acknowledged Alarm will remain acknowledged event after new matching events. This can be useful
when you know that there will be new matching events, but it will not change the situ-
ation. For example, if you have network device which will send new SNMP trap every
minute until problem solved, sticky acknowledge will help to eliminate unnecessary out-
standing alarms.

Resolved Network administrator sets this state when the problem is solved.
Terminated Inactive alarm. When problem is solved, network administrator can terminate alarm.

This will remove alarm from active alarms list and it will not be seen in Management
Client, but alarm record will remain in database.

There are 2 types of alarm state flows: strict and not strict. This option can be configured in Preference page of Alarms
or on server configuration page, parameter “StrictAlarmStatusFlow”. The difference between them is that in strict mode
Terminate can be done only after Resolve state.

Fig. 5: Not strict(default)

13.4. Alarms 195

NetXMS Administrator Guide, Release 5.2.0

Fig. 6: Strict

13.4.2 Alarm Melodies
On each severity of alarm can be set melody to play. This melody will be played when new alarm in state outstanding will
occur. Melody that should be played should exist on server in wav format. See instruction there: Upload file on server.
By default there are no sounds on alarms.
To set sound open preferences, there select Alarms ‣ Alarm Sounds tab. There in drop-down will be seen all possible
options. If sound will not be chosen, alarm with this severity will come silently.
To configure sounds, open preferences and select Alarms ‣ Alarm Sounds tab. Drop-downs next to each severity level
have a list of available sounds. If no sound is chosen, alarm for given severity will come silently.

196 Chapter 13. Event processing

NetXMS Administrator Guide, Release 5.2.0

13.4.3 Alarm Browser
When an alarm is generated it will appear in the Alarm Browser where information about currently active alarms can be
viewed.

13.4. Alarms 197

NetXMS Administrator Guide, Release 5.2.0

Alarm Comments
For each alarm can be created comments in “Alarm Details”

or “Alarm Comments” views.

Comment can be created, edited or deleted. All comments will be deleted after alarm termination.

198 Chapter 13. Event processing

NetXMS Administrator Guide, Release 5.2.0

Alarm Summary Emails
It is possible to schedule emails which contain a summary of all currently active alarms, similar to what can be seen in
the Alarm Browser.
Summary emails are sent through SMTP notification channel with HTML formatting. It should be first configured in
Notification channels configuration and then it’s name should be set in “DefaultNotificationChannel.SMTP.Html” server
configuration parameter.
To enable Alarm Summary Emails it is required to configure the following server parameters:

Name
DefaultNotificationChannel.SMTP.Html
EnableAlarmSummaryEmails
AlarmSummaryEmailSchedule
AlarmSummaryEmailRecipients

Further information on server configuration parameters can be found in Server configuration parameters.

13.4.4 Generating and Terminating Alarms from EPP
To generate alarms from events, you should edit Alarm field in appropriate rule of Event Processing Policy. Alarm con-
figuration dialog will look like this:

You should select Generate new alarm radio button to enable alarm generation from current rule. In the Message field
enter alarm’s text, and in the alarm key enter value which will be used for repeated alarms detection and automatic alarm
termination. In both fields you can use macros described in the Macros for Event Processing section.

13.4. Alarms 199

NetXMS Administrator Guide, Release 5.2.0

You can also configure sending of additional event if alarm will stay in Outstanding state for given period of time. To
enable this, enter desired number of seconds in Seconds field, and select event to be sent. Entering value of 0 for seconds
will disable additional event sending.
Alarms generated by rules can by categorised to limit what alarms can be seen by what users. This can be done by applying
a category in the Alarm Category field, which can be created and configured in the Alarm Category Configurator.

13.4.5 Alarm Category Configurator
Alarm categories can be created and configured in the Alarm Category Configurator which can be found in Configuration
‣ Alarm Category Configurator menu:

Fig. 7: Alarm Category Configurator

Alarm categories provide the possibility to configure access rights for viewing generated alarms on a per user or per group
basis. When creating an alarm category, it is possible to set the Category name, Description.

200 Chapter 13. Event processing

NetXMS Administrator Guide, Release 5.2.0

Fig. 8: Alarm Category properties

Alarm category access rights can be configured by adding users or groups to the access list of the category in the Access
Control property page.

13.4. Alarms 201

NetXMS Administrator Guide, Release 5.2.0

Fig. 9: Alarm Category Access Control

By default, all alarms can be viewed by all users due to the View all alarms system right being set as default to the
Everyone user group. In order to limit the viewing of alarms, this system right should be removed and the access rights
configured in the categories themselves. When the categories have been configured, they can be applied to the necessary
Event Processing Policy rules.
If an alarm category has been applied to an Event Processing Policy rule, it will appear in the Event Processing Policy Editor
when a rule is expanded under the Action section.

202 Chapter 13. Event processing

NetXMS Administrator Guide, Release 5.2.0

Fig. 10: Event Processing Policy expanded

13.4.6 Automatic Alarm Termination/Resolve
You can terminate or resolve all active alarms with given key as a reaction for the event. To do this, select Terminate
alarm radio button or Resolve alarm radio button in alarm configuration dialog and enter value for alarm key. For that
field you can use macros described in the Macros for Event Processing chapter.

13.4.7 Escalation
As it was described in Generating and Terminating Alarms from EPP chapter there is possibility to generate new event if
alarm stay in Outstanding state for too long. Escalation is built on this option. When alarm was generated, but no action
was done from operator in predefined time, new event can be generated and this time email or notification (SMS, instant
message) can be sent to operator or to it’s manager. This escalation process can have as many steps as it is required.

13.5 Actions
In addition to alarm generation server can perform various types of actions as a reaction to an event. Action types available
in NetXMS are described in the following sections. Each action can be separately disabled in action configuration.
After the action is added, it can be edited to add delay time and timer key. This option can be used to prevent notification
sending in case if problem solved quickly enough. Key is a free form string that supports macros and delay is the delay
time in seconds before action is executed.
The following example shows the configuration for the situation when there is no need to notify anyone if node went down
and back up in less then 5 minutes.

13.5. Actions 203

NetXMS Administrator Guide, Release 5.2.0

If, in adddition, we want to send notification when node goes up, but only if notification about node down was sent:

13.5.1 Escalation
One EPP rule can contain multiple actions with different delays. Delay timers are canceled by other rule in case of problem
resolution.
The next example shows that if node went down, then

1. after 1 minute responsible person will be notified if the problem still persists
2. after 30 minutes the support manager will be notified if the problem still persists
3. after 1 hour the IT manager will be notified if the problem still persists

204 Chapter 13. Event processing

NetXMS Administrator Guide, Release 5.2.0

13.5.2 Action types
Execute command on management server
Executes provided command on server node. Check that user under which netxmsd process run has permission to run
this command.

Execute command on remote node
Executes provided command name defined in this nodes agent configuration file. To this command can be given parame-
ters in format: commandName param1 param2 param3... Check that user under which nxagentd process run has
permission to run this command.
As the Remote Host can be used hostname or object name(int format: @objectName). Second option allows action
execution on node behind proxy.

Send notification
Send notification, e.g. SMS,MicrosoftTeams, e-mail etc, to one or more recipients. This can be configured in Notification
channels section described below and appropriate action created in Actions section and then available for use in EPP.
Driver configuration parameters are detailed in Drivers section.
In message text can be used Macros for Event Processing.

Execute NXSL script
This action executes script form scrip library. In action configuration should be defined name of script. Information about
scripting and library can be found there.

Forward event
NetXMS does not support configuration synchronization between two NetXMS servers(Distributed Monitoring). But it
is possible to forward events from one server to another. This option allow synchronize events between servers but there
are some limitation.

Configuration

Source server configuration:
1. Create new action of type “forward event” - it will have destination server address property.
2. Create a rule in event processing policy with filter for events you want to forward and add forwarding action

as action.
Destination server configuration:

1. Enable EnableISCListener and ReceiveForwardedEvents in server configuration.
2. Open port 4702.

13.5. Actions 205

NetXMS Administrator Guide, Release 5.2.0

3. Check that receiving server have all events as on a sending server

Limitation

Limitations of event forwarding:
1. Event template with same event code or event name must exist on recipient server
2. Node object with same IP address as event’s source node’s address must exist on recipient server
3. Does not work with zones

Events not met these conditions are discarded. It is possible to check if and why incoming events are discarded by turning
on level 5 debug on receiving server.
There can be used one of two options if it is required to disable polling of sender server nodes on recipient server: disable
all polling protocols or unmanage nodes. Chose depends on how you wish to see node’s status. For unmanaged node, it
always be “unmanaged”, regardless of active alarms. If you disable polling, node’s status will be “unknown” unless there
will be active alarms for that node - in that case node’s status will change to severity of most critical alarm.

13.5.3 Notification channels
NetXMS supports concept of notification channel drivers to provide SMS and instant message sending functionality. Role
of notification channel driver is to provide level of abstraction on top of different notification sending mechanisms and
uniform notification sending interface for server core. It is possible to set up and use several notification channels.
Configuration of notification channels is done in Configuration ‣ Notification channels.

Notification channel driver parameters are specified in Driver configuration input field. Each parameter is given on a
separate line in format: parameter_name=parameter_value. Meaning of parameters is driver dependent and described
separately for each driver. It a parameter is not given, it’s default value will be used.
Once notification channel is created is is seen in channel list with green or read square next to the name - it is channel
status identifier. It should be green if driver initialization was successful or read in other cases. Status column displays
last sent attempt status and Error message column provide more information about driver initialization or sending error.

206 Chapter 13. Event processing

NetXMS Administrator Guide, Release 5.2.0

Drivers
The following drivers are provided by default with NetXMS installation:

Driver Description
AnySMS SMS driver for any-sms.biz service (http://any-sms.biz). Configuration parameters:

• login (default: user)
• password (default: password)
• sender (default: NETXMS)
• gateway (default: 28)

DBTable This driver saves notifications to a database. Configuration parameters:
• DBDriver (default: sqlite.ddr)
• DBName (default: netxms)
• DBLogin (default: netxms)
• DBPassword
• DBServer (default: localhost)
• DBSchema
• MaxMessageLength (default: 255)
• MaxNumberLength (default: 32)
• QueryTemplate

Dummy Dummy driver for debugging purposes. Does not send any actual notifications and only
logs them to server log file. This driver has no configuration parameters. It is necessary
to set debug level to debug=6 or higher to get records in the log file.

Google chat Driver to send notifications to Google charts. You need to create incoming web hook
first. Each web hook have it’s own URL, you can either put it as recipient, or setup
mapping in notification channel configuration.
Mapping is done in the section “Rooms”.
Example:
[Rooms]

RoomName=URL

AnotherRoomName=URL

continues on next page

13.5. Actions 207

http://any-sms.biz
https://developers.google.com/chat/how-tos/webhooks
https://developers.google.com/chat/how-tos/webhooks

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Driver Description
GSM Driver for serial or USB attached GSM modems with support for standard GSM AT

command set. Configuration parameters:
• BlockSize (default: 8)
• DataBits (default: 8)
• Parity (default: n)
• Port (default: COM1: on Windows platforms, /dev/ttyS0 on other platforms)
• Speed (default: 9600)
• StopBits (default: 1)
• TextMode (1 - text mode, 0 - PDU mode, default: 1)
• UseQuotes (1 - use quotes, 0 - do not use quotes, default: 1)
• WriteDelay (default: 100)

Kannel Driver for Kannel SMS gateway (http://www.kannel.org). Configuration parameters:
• login (default: user)
• password (default: password)
• host (default: 127.0.0.1)
• port (default: 13001)

Mattermost Mattermost online chat service driver. Configuration parameters:
• AuthToken (required, example: f6ern7edy3ma9gtg9zdhaks9aw)
• Color
• Footer
• ServerURL (required, example: your.mattermost.server.fqdn)
• UseAttachments

MicrosoftTeams Notification channel driver for Microsoft Teams. Configuration parameters:
• ThemeColor - team color in RGB, default: FF6A00 (optional parameter)
• UseMessageCards - flag if message cards should be used, default: no (optional
parameter)

Optional configuration section “Channels” should contain list of channels in the follow-
ing format: channelName=URL, where channelName is an arbitrary name later used
as recipient in action configuration. More information about setting up the URL of
incoming webhook available there
#config example

ThemeColor=FF6A00

UseMessageCards = false

[Channels]

Channel=URL

AnotherChannel=URL

MsTeams requires 2 fields in action configuration:
• Recipient name - channel name defined in Channels section or incoming webhook
URL

• Message - message to be sent

continues on next page

208 Chapter 13. Event processing

http://www.kannel.org
https://docs.microsoft.com/en-us/microsoftteams/platform/webhooks-and-connectors/how-to/connectors-using#setting-up-a-custom-incoming-webhook

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Driver Description
MQTT Driver for sending messages to MQTT broker. Sending is done by NetXMS server

process. When sending, MQTT topic is specified in recipient field, value in message
body field. Configuration parameters:

• hostname (default: 127.0.0.1)
• port (defalut: 1883)
• login
• password

MyMobile SMS driver for MyMobile API gateways. Configuration parameters:
• username
• password

Nexmo SMS driver for Nexmo gateway. Configuration parameters:
• apiKey (default: key)
• apiSecret (default: secret)
• from (default: NetXMS)

NXAgent Similar to gsm.ncd, but sending is done via GSM modem, attached to NetXMS agent.
Configuration parameters:

• hostname (default localhost)
• port (default: 4700)
• timeout (seconds, default: 30)
• secret
• encryption - optional parameter. Encryption policy:

0 = Encryption disabled;
1 = Encrypt connection only if agent requires encryption;
2 = Encrypt connection if agent supports encryption;
3 = Force encrypted connection;

• keyFile - optional parameter. Specify server’s key file, if not specified will take
default path.

Portech Driver for PortechMV-372 andMV-374 GSM gateways (https://www.portech.com.tw/
p3-product1_1.asp?Pid=14). Configuration parameters:

• host (default: 10.0.0.1)
• secondaryHost
• login (default: admin)
• password (default: admin)
• mode (PDU or TEXT, default: PDU)

Shell Driver executes shell commands on the server. Configuration parameter:
• Command

In the command ${recipient}, ${subject} and ${text} macros will be correspondingly
replaced with values of recipient, subject and text.

Slack Driver for slack.com service. Configuration parameters:
• url
• username

continues on next page

13.5. Actions 209

https://www.portech.com.tw/p3-product1_1.asp?Pid=14
https://www.portech.com.tw/p3-product1_1.asp?Pid=14

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Driver Description
SMSEagle Driver for SMSEagle Hardware SMS Gateway. Configuration parameters:

• host (default: 127.0.0.1)
• port (defalut: 80)
• login (default: user)
• password (default: password)
• https (1 - use https, 0 - do not use https)

SMTP Driver to send notifications using SMTP protocol. Encryption and authentication are
supported. Driver is using libcurl library to send emails. Mail encoding is always utf8.

• FromAddr (default: netxms@localhost)
• FromName (default: NetXMS Server)
• IsHTML (no - do not use HTML, yes - use HTML; default: no)
• Login (default: none)
• Password (default: none). Passwords encrypted by nxencpasswd are supported. If
password provided by your email service is 44- or 88-character base64 string, it
will be interpreted as a password encrypted by nxencpasswd, in this case encrypt
password provided by your email service with nxencpasswd.

• Port (default: 465 if TLSMode=TLS, 25 otherwise))
• Server (default: localhost)
• TLSMode (NONE - No TLS (default), TLS - Enforced TLS, STARTTLS - Op-
portunistic TLS)

continues on next page

210 Chapter 13. Event processing

mailto:netxms@localhost

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Driver Description
SNMPTrap Driver to send notifications as SNMP traps. Driver configuration parameters:

• Community (default: public)
• Port (default: 162)
• ProtocolVersion (possible values: 1, 2c, 3; default: 2c)

Driver configuration parameters applicable to SNMP v3 only:
• AuthMethod (possible values: none, sha1, sha224, sha256, sha384, sha512; de-
fault: none)

• AuthPassword
• PrivMethod (possible values: none, aes, des; default: none)
• PrivPassword
• UseInformRequest (default: false)
• UserName (default: netxms)

Raden Solutions has IANA assigned Private Enterprise Number (57163). MIB files
defining the OIDs (RADENSOLUTIONS-SMI.txt and NETXMS-MIB.txt) are in-
cluded with NetXMS server. It’s also possible to use custom OIDs by setting the follow-
ing driver configuration parameters:

• AdditionalDataFieldID (default: .1.3.6.1.4.1.57163.1.1.6.0)
• AlarmKeyFieldID (default: .1.3.6.1.4.1.57163.1.1.5.0)
• MessageFieldID (default: .1.3.6.1.4.1.57163.1.1.3.0)
• SeverityFieldID (default: .1.3.6.1.4.1.57163.1.1.2.0)
• SourceFieldID (default: .1.3.6.1.4.1.57163.1.1.1.0)
• TimestampFieldID (default: .1.3.6.1.4.1.57163.1.1.4.0)
• TrapID (default: .1.3.6.1.4.1.57163.1.0.1)

Recipient’s address should contain host name or IP address the trap is sent to. Message
and subject are sent as separate fields (MessageFieldID and AdditionalDataFieldID) in
the trap message. In addition to that, if subject contains semicolon-separated key=value
pairs or JSON and the key is from below list, additional fields with these values will be
added to trap message. List of supported keys:

• key - alarm key
• source - source object name
• severity - event severity (integer in range 0..4)
• timestamp - original even timestamp as UNIX time

E.g. subject could be key=%K;source=%n;severity=%s;timestamp=%T. Sub-
ject field could be generated using NXSL script that is called using %[script_name]
macro. This is convenient for generating JSON.
JSON data can have more fields in addition to the above mentioned, this allows to send
more information in the trap.

continues on next page

13.5. Actions 211

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Driver Description
Telegram Notification channel driver for Telegram messenger. Configuration parameters:

• AuthToken
• DisableIPv4 - true to disable IPv4 usage
• DisableIPv6 - true to disable IPv6 usage
• ParseMode - Text formatting style: Markdown, HTML or MarkdownV2. See Tele-
gram API documentation on formatting syntax: https://core.telegram.org/bots/
api#formatting-options

• Proxy - proxy url or ip or full configuration if format
[scheme]://[login:password]@IP:[PORT]

• ProxyPort - proxy port
• ProxyType - proxy type: http, https, socks4, socks4a, socks5 or socks5h
• ProxyUser - proxy user name
• ProxyPassword - proxy user password

Only AuthToken field is mandatory field all others are optional.
It is necessary to create a telegram bot that NetXMS server will use to send messages.
In order to create a new bot it’s necessary to talk to BotFather and get bot authentication
token (AUTH_TOKEN). Set authentication token in notification channel configuration,
e.g.: AuthToken=1234567890:jdiAiwdisUsWjvKpDenAlDjuqpx
The bot can:

• Have a private chat with another Telegram user
• Participate a group
• Be channel admin

Telegram’s bot can’t initiate conversations with users in a private chat or a group. A user
must either add bot to a group or send a private message to the bot first.
Chat, group or channel is identified by ID or name (without @ prefix). For private chats
only users who configured a Username can be identified by name (without @ prefix).
NetXMS stores the correspondence between ID and name when the bot receives a mes-
sage in chat or group (NetXMS server should be running a that moment). If group,
channel name or username is changed, it’s necessary to send any message to the bot so
new correspondence could be stored.
Telegram notification channel requires 2 fields in action configuration:

• Recipient name - It could be name (of a group, channel or username, without @
prefix) or ID of group, channel or chat.

• Message - text that should be sent
If you want to use ID to identify a recipient, you can get it by opening Tele-
gram API URL in your browser, e.g. https://api.telegram.org/bot1234567890:
jdiAiwdisUsWjvKpDenAlDjuqpx/getUpdates After sending a message to the bot or
adding it to a group you should see chat id there. You might need to temporary decon-
figure Telegram notification channel, otherwise if NetXMS server is running, it will read
data from Telegram API first.

Text2Reach Driver for Text2Reach.com service (http://www.text2reach.com). Configuration pa-
rameters:

• apikey (default: apikey)
• from (default: from)
• unicode (1 or 0, default: 1)
• blacklist (1 or 0, default: 0)

TextFile Notification driver that writes messages to text file. Configuration parameter:
• OutputFile - path to file.

continues on next page

212 Chapter 13. Event processing

https://core.telegram.org/bots/api#formatting-options
https://core.telegram.org/bots/api#formatting-options
https://api.telegram.org/bot1234567890:jdiAiwdisUsWjvKpDenAlDjuqpx/getUpdates
https://api.telegram.org/bot1234567890:jdiAiwdisUsWjvKpDenAlDjuqpx/getUpdates
http://www.text2reach.com

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Driver Description
Twilio Driver for Twilio.com service (http://www.twilio.com). Configuration parameters:

• CallerId - caller ID
• SID - account SID (for authentication)
• Token - account security token (for authentication)
• Voice - voice to be used for Text To Speech (man, woman, alice, or any of the
Amazon Polly voices. See here for more information https://www.twilio.com/
docs/voice/twiml/say#voice)

• UseTTS - true/false, enable or disable Text To Speech (default is false)

WebSMS Driver for websms.ru service (https://websms.ru). Configuration parameters:
• login (default: user)
• password (default: password)
• m_fromPhone

XMPP Driver for XMPP/Jabber messages. Configuration parameters:
• Server (default: localhost)
• Port (default: user)
• Login - may or may not contain XMPP domainpart. If no domainpart is specified
server name will be added to login. (default: netxms@localhost)

• m_fromPhone (default: 5222)

13.6 NXLS Persistent Storage
13.6.1 NXSL
There are 2 functions:

• ReadPersistentStorage(“key”) - read value by key
• WritePersistentStorage(“key”, “value”) - insert or update value by key. If value will be empty - variable will
be deleted.

13.6.2 View
Persistent Storage view (Configuration ‣ Persistent Storage) provide information about current state of Persistent Storage
variables.

13.6. NXLS Persistent Storage 213

http://www.twilio.com
https://www.twilio.com/docs/voice/twiml/say#voice
https://www.twilio.com/docs/voice/twiml/say#voice
https://websms.ru
mailto:netxms@localhost

NetXMS Administrator Guide, Release 5.2.0

13.7 Macros for Event Processing
On various stages of event processing you may need to use macros to include information like event source, severity, or
parameter in your event texts, alarms, or actions. You may use the following macros to accomplish this:

Macro Description
%a IP address of event source object.
%A Alarm’s text. This macro is populated when creating, resolving or termi-

nating alarm in EPP rule. Macro is available in that EPP rule for persistent
storage and server action and in subsequent EPP rules.
Changed in version 3.8.314.
Prior to 3.8.314 this macro was available only withing given EPP rule.

%c Event’s code.
%C Comment of event source object.

Added in version 4.4.3.
%D Comment of Data Collection Item (only for threshold violation events)

Added in version 4.4.3.
%E List of comma-separated user tags associated with the event.
%g Globally unique identifier (GUID) of event source object.
%i Unique ID of event source object in hexadecimal form. Always prefixed

with 0x and contains exactly 8 digits (for example 0x000029AC).
%I Unique ID of event source object in decimal form.
%K Alarm’s key (can be used only in actions to put text of alarm from the same

event processing policy rule).
%L Alias of event source object.

Added in version 4.4.3.
%m Event’s message text (meaningless in event template).
%M Custom message text. Can be set in filtering script by setting CUS-

TOM_MESSAGE variable.
%n Name of event source object. Name of interface when interface name is

generated using macros.
%N Event’s name.
%s Event’s severity code as number. Possible values are:

• 0 - Normal
• 1 -Warning
• 2 - Minor
• 3 - Major
• 4 - Critical

%S Event’s severity code as text.
%t Event’s timestamp is a form day-month-year hour:minute:second.
%T Event’s timestamp as a number of seconds since epoch (as returned by time()

function).
%v NetXMS server’s version.
%z Zone UIN of event source object.
%Z Zone name of event source object.
%[name] Value returned by script. You should specify name of the script from script

library. It’s possible to specify script entry point separating it by /, e.g.
to call a function named calculate: %[name/calculate]. Script pa-
rameters can be specified in brackets, e.g.: %[name(123,"A textual

parameter")]

continues on next page

214 Chapter 13. Event processing

http://linux.die.net/man/2/time

NetXMS Administrator Guide, Release 5.2.0

Table 2 – continued from previous page
Macro Description
%{name} Value of custom attribute. Expansion is attempted in the following order:

1. If information about a DCI is available during expansion (when pro-
cessing threshold violation event or if macro is used in a field in DCI
properties), custom attribute name::instance is taken, where in-
stance is instance of a DCI.

2. If above custom attribute is not found, name custom attribute is taken.
If custom attribute exists, but has empty value, this empty value is taken
(if this macro is used in a place where its value is converted to numeric
value - e.g. as threshold value for a numeric DCI - then empty value will be
converted to 0).

%{name:default_value} Value of custom attribute. Expansion is attempted in the following order:
1. If information about a DCI is available during expansion (when pro-

cessing threshold violation event or if macro is used in a field in DCI
properties), custom attribute name::instance is taken, where in-
stance is instance of a DCI.

2. If above custom attribute is not found, name custom attribute is taken.
3. If above custom attribute is not found, default_value is taken.

If custom attribute exists, but has empty value, this empty value is taken
(if this macro is used in a place where its value is converted to numeric
value - e.g. as threshold value for a numeric DCI - then empty value will be
converted to 0).

%<name> Event’s parameter with given name.
%<{format-specifier}name> Formatted event’s parameter with given name. This is applicable to DCI

value and threshold value parameters. format-specifier is comma-
separated list supporting the following options:

• units - add measurement units from DCI’s properties. For Epoch
time and Uptime this will also convert the value.

• u - same as units
• multipliers - display values with multipliers (e.g. 1230000 be-
comes 1.23 M)

• m - same as multipliers

%1 - %99 Event’s parameter number 1 .. 99.
%% Insert % character.

If you need to insert special characters (like carriage return) you can use the following notations:

Char Description
\t Tab Character (0x09)
\n New line, CR/LF character pair
\\ Backslash character

13.7. Macros for Event Processing 215

NetXMS Administrator Guide, Release 5.2.0

216 Chapter 13. Event processing

CHAPTER

FOURTEEN

DATA AND NETWORK VISUALISATION

14.1 Network maps
Network map objects can be found in “Object browser” under “Network Maps”. There can be created and deleted maps
and map groups. Maps can be organized in groups.

14.1.1 Creating Maps
There are 3 types of map that can be created:

• Custom - will be created empty map.
• Layer 2 Topology - will create map(if possible) with layer 2 topology of selected object. Will be automatically
updated on topology change.

• IP Topology - will create map with known IP Topology of selected object. (More about network topology
can be found there Network topology) Will be automatically updated on topology change.

• Internal communication topology - map created based on internal communication between server and node
(will show SNMP, ICMP,).

217

NetXMS Administrator Guide, Release 5.2.0

Fig. 1: Network map layer 2

Type of created map affects only on initial map setup.

14.1.2 Edit Maps

218 Chapter 14. Data and Network visualisation

NetXMS Administrator Guide, Release 5.2.0

14.1.3 Adding Objects
Network map can be populated in 2 different ways: automatically and manually. Automatically are populated Layer 2, IP
Topology and Internal communication topology. Object filer (in properties of the map) can be created for automatically
populated maps to filter out unrequited nodes.
Objects to map can be added in tow ways:

1. Just drag and drop object to map from object browser.
2. “Add object…” from menu.

To remove object from map:
• Select object, right click and select “Remove from map” option.

14.1.4 Adding Links between Objects
Objects can be linked with a line.
To link objects:

• Select two of objects with help of CTRL button and press “Link selected objects” button.

To remove the link:
• Select line, right click and select “Remove from map” option.

Link properties:
Select link line, right click and select “Properties”.
The following properties can be configured:

• Link name
• Connector names (shown on the link line near each connected object)
• Line color

– Default - grey
– Based on object status - object(s) should be selected
– Custom color

• Routing algorithm
– Map Default - algorithm selected in map properties will be used
– Direct - straight line without bend points
– Manhattan - line with automatic bend points
– Bend points - bend point can be added manually with double click on the line

• Label position - defines position of label containing link name and DCI values on the link. 50 means middle
of the link.

14.1. Network maps 219

NetXMS Administrator Guide, Release 5.2.0

• Data Source (allows to configure DCI values and text near them that will be displayed on a link).
• For each Data Source can be configured: Data collection item, name, format string, in case of table DCI also
column and instance. If format string is not provided, default formatting including multipliers and measure-
ment units is used.
Java format string syntax is used, e.g. Text: %.4f, syntax description is available here: http://docs.oracle.
com/javase/7/docs/api/java/util/Formatter.html#syntax.
Additional format specifier can be provided in curly brackets after % sign to display multipliers and measure-
ment units, e.g. %{units,multipliers}f.
Format specifier is comma-separated list supporting the following options:
– units - add measurement units from DCI’s properties. For Epoch time andUptime this will also convert
the value.

– u - same as units
– multipliers - display values with multipliers (e.g. 1230000 becomes 1.23 M)
– m - same as multipliers

Example of DCI data displayed on a link:

14.1.5 Decorations
Decorations like picture and group box can be added to maps. To add picture it should be previously be uploaded to
“Image Library”.
When creating group box you should specify it’s size, color and name.

14.1.6 DCI Container
DCI Container is part of decorations. It can be used to display separate dci values on a map.

220 Chapter 14. Data and Network visualisation

http://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html#syntax
http://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html#syntax

NetXMS Administrator Guide, Release 5.2.0

Container properties:
• Background color
• Text color
• If border should be shown and it’s color
• Data Source - there can be configured DCI values and text near them that will be displayed

– For each Data Source can be configured: Data collection item, name, format string (e.g. “Text: %.4f”
or “Text: %*s”), in case of table DCI also column and instance

More examples:

14.1.7 DCI Image
DCI Image is part of decorations. It can be used to display DCI status change in pictures.
DCI image properties

• Data source - DCI which data will be taken to process picture display rules
• Column - required only for table DCI
• Instance - required only for table DCI

14.1. Network maps 221

NetXMS Administrator Guide, Release 5.2.0

• Default image - image that will be displayed if no rule is applicable on current value
• Rules

– For each rule can be configured: operation, value, comment and image that will be displayed if this
rule is applicable

Hints:
To use image it should be first uploaded to image library.
Rules are processed from up to down, so if you want to describe in rules something like:

• DCI > 3 => image1
• DCI > 2 => image2
• DCI > 4 => image3

They should go in this sequence:
• DCI > 4 => image3
• DCI > 3 => image1
• DCI > 2 => image2

14.1.8 Object Layout and display options
All object layout properties and display options are applicable only on objects, not on decorations.

Grid
• Align to grid - will move all objects to grids
• Snap to grid - all objects will be moved in grids and it will not be possible to place them not inside grid.
• Show grid - will show grid according to which objects are located.

Layout
Objects can be placed manually on a map or can be chosen one of automatic layouts:

• Spring
• Radial
• Horizontal tree
• Vertical tree
• Sparse vertical tree

If there is chosen automatic layout, then after each refresh object best matching place will be recalculated. So if new
object is add - it is just required to refresh map to have correctly placed objects.
If there is chosen manual layout, then after each object movement map should be saved, to save the new place of object.

222 Chapter 14. Data and Network visualisation

NetXMS Administrator Guide, Release 5.2.0

Display object as
• Show status background - will display background behind object image according to it’s state.
• Show status icon - will display icon of object state near each object
• Show status frame - will display frame around object icon according to it’s state
• Floor plan - will display nodes as adjustable rectangles. This can be used to display hardware placement on room
plan.

Routing
Default routing type for whole map:

• Direct - objects are connected by links drawn to shortest route
• Manhattan - objects are connected by grid-based links

Zoom
Map can be zoomed in and out with help of top menu buttons and to predefined percentage selected from menu.

Object display options
Objects can be displayed in 3 ways:

• Icons
• Small labels
• Large labels

14.1.9 Map Background
It can be set background for map:

• Colour
• Image - image should be uploaded to “Image Library” before.
• Geographic Map - place on map is chose with help of zoom and coordinates

This can be used to show object physical please on map or on building plan.
Examples:

14.1. Network maps 223

NetXMS Administrator Guide, Release 5.2.0

14.2 Dashboards
Dashboards are defined by administrator and allow to combine any available visualization components with data from
multiple sources in order to create high-level views to see network (or parts of it) health at a glance. For example, below
is a dashboard showing traffic information from core router, as well as CPU usage from vital nodes:

224 Chapter 14. Data and Network visualisation

NetXMS Administrator Guide, Release 5.2.0

There are two ways to access dashboards:
Open dashboard from Object Browser

• Open dashboard from Object Browser

• Switch to Dashboard perspective and select dashboard with left-click

14.2.1 Configuration
Dashboards is a special type of objects created in Dashboards tree. To create a new dashboard, right click on Dashboards
root object or any other existing dashboard and select Create dashboard. To configure dashboard content, open object’s
properties and go to Dashboard Elements:guilabel: page. Here you can define number of columns and manage list of
elements. Press Add:guilabel: to add new element. You will be prompted with element type selection dialog:

When a new element is added, you can edit it by double-clicking on it’s record in the elements list, or by pressing the
Edit button. Each element have Layout property page which controls the element’s layout inside the dashboard, and one
or more element type specific pages to control element’s appearance and displayed information. The following element
types are available:

Label
Text label with configurable text and colors.

14.2. Dashboards 225

NetXMS Administrator Guide, Release 5.2.0

Line Chart
Line chart.

Bar Chart
Bar chart.

Pie Chart
Pie chart.

226 Chapter 14. Data and Network visualisation

NetXMS Administrator Guide, Release 5.2.0

Status Chart
Bar chart which shows current status distribution for nodes under given root.

Status Indicator
Shows current status of selected object.

Dashboard
Another dashboard object (or multiple objects) rendered as element of this dashboard.

14.2. Dashboards 227

NetXMS Administrator Guide, Release 5.2.0

Network Map
Network map object rendered as dashboard element.

Custom Widget
Custom widget provided by third party management client plugin. This options allows to add widget from third party
loaded plugin.

Get Map
Geographic map centered at given location.

Alarm Viewer
List of alarms for given object subtree.

Availability Chart
Pie chart showing availability percentage for given business service

228 Chapter 14. Data and Network visualisation

NetXMS Administrator Guide, Release 5.2.0

Gauge
Gauge have 3 types of widgets

• Dial is radial gauge with configurable maximum, minimum values. Scale can have fixed color or can be separated
to 3 color configurable zones.

• Dar is linear gauge with configurable maximum, minimum values. Scale can have fixed color or can be separated
to 3 color configurable zones. (Not yet implemented)

• Text is text gauge, that can be colored using fixed color, changed depending on 3 configurable color zones or colored
using threshold color (severity).

Web Page
Web page at given URL rendered within dashboard.

14.2. Dashboards 229

NetXMS Administrator Guide, Release 5.2.0

Bar Chart for Table DCI
Bar chart built from data collected via single table DCI.

Pie Chart for Table DCI
Pie chart built from data collected via single table DCI.

Separator
Separator, can be shown as line, box, or simply empty space.

Table Value
This widget displays table with last values of Table DCI.

230 Chapter 14. Data and Network visualisation

NetXMS Administrator Guide, Release 5.2.0

Status Map
Status map has three views: Flat view, Group view and Radial view.
Flat view and Group view display nodes as rectangles, using color to indicate their status. In Flat view nodes are displayed
without grouping, whether in Group view nodes are grouped by containers.

Radial view displays containers and nodes as hierarchical colored radial layout.

DCI Summary Table
DCI Summary Table widget provides summary DCI information about objects under container.

Syslog Monitor
Syslog monitor widget. Has additional option to set root object to filter objects what will be shown in monitor. One object
or a container that contains required objects can be set as root object.

14.2. Dashboards 231

NetXMS Administrator Guide, Release 5.2.0

SNMP Trap Monitor
SNMP Trap monitor widget. Has additional option to set root object to filter objects what will be shown in monitor. One
object or a container that contains required objects can be set as root object.

Event monitor
Event monitor widget. Has additional option to set root object to filter objects what will be shown in monitor. One object
or a container that contains required objects can be set as root object.

232 Chapter 14. Data and Network visualisation

NetXMS Administrator Guide, Release 5.2.0

Service component map
Map displays hierarchy of objects in Infrastructure Service starting from selected root object.

Rack diagram
Shows rack front, back or both views with object placement in it.

14.2. Dashboards 233

NetXMS Administrator Guide, Release 5.2.0

Object tools
Shows buttons with pre configured object tools, that are executed on click.

Object query
Shows columns with filtered objects’ information.
Object query has 2 main configurations. Query that filterers objects and provide option to create additional information
about object in columns and Object Properties that lists information that should be shown in table.
Query
It is a script that is executed on each object and should return true if object should be displayed in the table and false
if it should not. It has special syntax that provides option to calculate additional values for columns in Object Properties

234 Chapter 14. Data and Network visualisation

NetXMS Administrator Guide, Release 5.2.0

section. This syntax is optional and usual NXSL script can be used instead. Usual NXSL script should return true or map
(where key is column name and value is value for this column) if node should be shown and false if not, additional self
calculated columns can be defined as global variables.
Syntax:

with

varName = { code or expression },

varName = { code or expression }

/* Might be as many blocks as required.

* varName is a name of the variable where result of a code will be assigned.

* It can be used later in the code in expression or to be displayed in table

* using the same name in the Object Properties part.

*/

expression

/* Short circuit evaluated expression. This expression is executed first and if it␣

↪→contains not yet calculated

* varName then variable is calculated and used in expression. Expression that should␣

↪→result as true or false

* as a sign if this object should be displayed in table or not. No semicolon at the␣

↪→end.

*/

This page provides option to configure columns that should be used for ordering, refresh interval and record limit. To
order column write a coma separated list of attribute named or varNames with - sign to order in descending order and
with + sign to order in ascending order.
Object Properties
This property page is used to organize required columns and column order in table. Each column configuration consists
of name of object’s attribute or varName defined in Query page, display name used as a name for a column and data type
of the column.
Example
This example will show how to filter nodes that only have alarms on them, are not in maintenance mode and show count
of critical alarms on the node, order by critical alarm count the list and then by node name. Example shows two different
options how to write the same script so only one of them should be used.
Configuration:

14.2. Dashboards 235

NetXMS Administrator Guide, Release 5.2.0

Fig. 2: Option 1. Query script with “with” syntax

236 Chapter 14. Data and Network visualisation

NetXMS Administrator Guide, Release 5.2.0

Fig. 3: Option 2. Query script with usual NXSL script and global variables

14.2. Dashboards 237

NetXMS Administrator Guide, Release 5.2.0

Fig. 4: Configuration of Properties to display will be the same for both scripts

Result:

238 Chapter 14. Data and Network visualisation

NetXMS Administrator Guide, Release 5.2.0

Port view
Shows ports schematic with each port status. One object or a container that contains required objects can be set as root
object.

14.2.2 Element Property Pages
Chart
Chart page is available for all chart type elements: Bar Chart, Bar Chart for Table DCI, Dial Chart, Line Chart, Pie Chart,
Pie Chart for Table DCI. It defines basic properties of a chart.

14.2. Dashboards 239

NetXMS Administrator Guide, Release 5.2.0

Data Sources
Data sources page is available for all DCI based elements: Bar Chart, Dial Chart, Line Chart and Pie Chart. Here you
can define what DCIs should be used as data sources for the chart. Up to 16 DCIs can be added to a single chart. You
can configure multiple properties for each data source. To edit data source, either double click on appropriate item in the
list, or press Edit button. Data source configuration dialog looks like following:

Property Description
Data collection item DCI object to be used.
Display name Name for this data source to be used in chart’s legend. If left empty, DCI description

will be used.
Colour Allows you to define specific color for this data source or let system to pick one auto-

matically.
Area chart This option is valid only for line charts and toggles data source display as filled area

instead of line.
Show thresholds This option is valid only for line charts and toggles display of configured thresholds.

240 Chapter 14. Data and Network visualisation

NetXMS Administrator Guide, Release 5.2.0

Layout

Property Description
Horizontal alignment Horizontal alignment for this element. Possible values are FILL, CENTER, LEFT, and

RIGHT.
Vertical alignment Vertical alignment for this element. Possible values are FILL, CENTER, TOP, and BOT-

TOM.
Horizontal span Specify how many grid cells this element will occupy horizontally.
Vertical span Specify how many grid cells this element will occupy vertically.
Width hint Hint for element’s width in pixels. Default value of -1 means that layout manager will

decide width for element.
Height hint Hint for element’s height in pixels. Default value of -1 means that layout manager will

decide width for element.

See detailed information about layout in section Understanding Element Layout.

Web Page
:guilabel`Web Page` property page is available for web page type elements. Here you can define URL to be displayed and
optional title. If title is not empty, it will be displayed above page content.

14.2.3 Understanding Element Layout
Dashboard uses grid concept to layout it’s elements. Available space is divided into rows and columns, and each element
occupies one or more cells. The number of columns is configured in dashboard object properties, and number of rows is
calculated automatically based on number of columns, elements, and cells occupied by each element. Elements are laid
out in columns from left to right, and a new row is created when there are no space left for next element on current row.
Each element has horizontal and vertical alignment properties. Default for both is FILL. Possible alignment values are
following:

14.2. Dashboards 241

NetXMS Administrator Guide, Release 5.2.0

Value Description
FILL Make element to fill whole cell. Also causes to grab excess free space available inside

dashboard. If more than one element is trying to grab the same space, then the excess
space is shared evenly among the grabbing elements.

CENTER Center element within cell.
LEFT/TOP Align element to left/top of the cell.
RIGHT/BOTTOM Align element to right/bottom of the cell.

Fig. 5: Complex layout configuration

This configuration will be rendered into this layout:

242 Chapter 14. Data and Network visualisation

NetXMS Administrator Guide, Release 5.2.0

14.2.4 Dashboard Rotation
To create configuration when management client displays multiple dashboards one by one in a loop, follow these steps:

• Create all dashboards you want to show
• Create additional dashboard object, with single element of type Dashboard inside
• Add all dashboards you want to show to dashboard list of that element and set desired time between changing
dashboards.

14.2. Dashboards 243

NetXMS Administrator Guide, Release 5.2.0

Fig. 6: Sample configuration of two dashboards displayed in a loop for 40 seconds each.

14.2.5 Tutorials
Dashboard creation tutorial available on Youtube

14.3 Graphs
You can view collected data in a graphical form, as a line chart. To view values of some DCI as a chart, first open either
Data Collection Editor or Last Values view for a host. You can do it from the Object Browser or map by selection host,
right-clicking on it, and selecting Data collection or Last DCI values. Then, select one or more DCIs (you can put up to 16
DCIs on one graph), right-click on them and choose Graph from the pop-up menu. You will see graphical representation
of DCI values for the last hour.
When the graph is open, you can do various tasks:

14.3.1 Select different time interval
By default, you will see data for the last hour. You can select different time interval in two ways:

1. Select new time interval from presets, by right-clicking on the graph, and then selecting Presets and appropriate
time interval from the pop-up menu.

2. Set time interval in graph properties dialog. To access graph properties, right-click on the graph, and then select
Properties from the pop-up menu. Alternatively, you can use main application menu: Graph ‣ Properties. In the
properties dialog, you will have two options: select exact time interval (like 12/10/2005 from 10:00 to

14:00) or select time interval based on current time (like last two hours).

244 Chapter 14. Data and Network visualisation

http://youtu.be/ZfJQiUIDHY4

NetXMS Administrator Guide, Release 5.2.0

14.3.2 Turn on automatic refresh
You can turn on automatic graph refresh at a given interval in graph properties dialog. To access graph properties, right-
click on it, and select Properties from the pop-up menu. Alternatively, you can use main application menu: Graph ‣
Properties. In the properties dialog, select the Refresh automatically checkbox and enter a desired refresh interval in
seconds in edit box below. When automatic refresh is on, you will see Autoupdate message in the status bar of graph
window.

14.3.3 Change colors
You can change colors used to paint lines and graph elements in the graph properties dialog. To access graph properties,
right-click on it, and select Properties from the pop-up menu. Alternatively, you can use main application menu: Graph ‣
Properties. In the properties dialog, click on colored box for appropriate element to choose different color.

14.3.4 Save current settings as predefined graph
You can save current graph settings as predefined graph to allow quick and easy access in the future to information
presented on graph. Preconfigured graphs can be used either by you or by other NetXMS users, depending on settings.
To save current graph configuration as predefined graph, select Save as predefined from graph view menu. The following
dialog will appear:

In Graph name field, enter desired name for your predefined graph. It will appear in predefined graph tree exactly
as written here. You can use -> character pair to create subtree. For example, if you name your graph NetXMS

Server->System->CPU utilization (iowait) it will appear in the tree as following:

You can edit predefined graph by right-clicking on it in predefined graph tree, and selecting Properties from context
menu. On Predefined Graph property page you can add users and groups who will have access to this graph. Note that
user creating the graph will always have full access to it, even if he is not in access list.
If you need to delete predefined graph, you can do it by right-clicking on it in predefined graph tree, and selecting Delete
from context menu.

14.3. Graphs 245

NetXMS Administrator Guide, Release 5.2.0

14.3.5 Save current settings as template graph

Current graph settings can be saved as a template graph for an easy template graph creation. The difference between
predefined graphs and template graphs are that template graphs are not configured to view specific DCI`s on a node,
instead they are configured to view DCI names that can be found on many nodes (e.g. FileSystem.FreePerc(/)).
This allows for the creation of certain graph templates to monitor, for example, disk usage that can be reused on any node
to which the appropreate DCI`s are applied on via DCI configuration.
See detailed information on template graphs in the section Template Graph Configuration.
In the Graph name field of the pop-up save dialog, enter the desired name for the template graph by which you can later
identify your it in the Template Graph Configuration which can be found in Configuration‣Template Graph Configuration.

246 Chapter 14. Data and Network visualisation

NetXMS Administrator Guide, Release 5.2.0

Template graphs can be accessed in theObject Browser as seen on the screenshot above. When a template graph is created,
it will appear in the sub-menus of the nodes found in Object Browser, the rest of the settings can be accessed by editing a
template graph in the Template Graph Configuration.

14.3.6 Template Graph Configuration
Template graphs are used to ease the monitoring of a pre-set list of DCI`s on multiple nodes by adding a list of DCI names
to the template source. This allows for the possibility to create templates to monitor specific data on any node to which
the appropriate DCI`s are applied on.

14.3. Graphs 247

NetXMS Administrator Guide, Release 5.2.0

The Template Graph Configuration is used to create and edit template graphs. Properties for already created template
graphs can be brought up by double clicking the template graph you wish to edit and new ones can be added by pressing
the green cross on the top right or by right clicking and selecting Create new template graph.

248 Chapter 14. Data and Network visualisation

NetXMS Administrator Guide, Release 5.2.0

Fig. 7: Name and access rights of a graph

The above property page provides the possibility to configure the name of the template graph and the access rights. The
user who has created the template graph will have full access to it even though the username will not show up in the access
right list.

14.3. Graphs 249

NetXMS Administrator Guide, Release 5.2.0

Fig. 8: General graph properties.

Title:
• The title that the graph will have when opened.
• The title can contain special characters described in Macro Substitution.

Options:

Option Description
Show grid lines Enable or disable grid lines for the graph.
Stacked Stacks the graphs of each value on top of one another to be able to see the

total value easier (e.g. useful when monitoring cpu usage).
Show legend Enable or disable the legend of the graph.
Show extended legend Enable or disable the extended legend of the graph (Max, Avg, Min, Curr).
Refresh automatically Enable or disable auto-refresh.
Logarithmic scale Use the logarithmic scale for the graph.
Translucent Enable or disable the translucency of the graph.
Show host names Show host name of the node from which the value is taken.
Area chart Highlights the area underneath the graph.
Line width Adjust the width of the lines.
Legend position Set the position of the legend.
Refresh interval Set the refresh interval.

250 Chapter 14. Data and Network visualisation

NetXMS Administrator Guide, Release 5.2.0

Time Period:
Provides the possibility to configure the time period of the graph. It is possible to set a dynamic time frame (Back from
now) and a static time frame (Fixed time frame).
Y Axis Range:
Adjust the range of the Y axis on the graph.

Fig. 9: Template graph filter properties.

It may be necessary to set certain filters for a template graph. This can be useful if the graph contains DCI names that
are only available on NetXMS agent or are SNMP dependant.
More information on filters can be found in Filter.

14.3. Graphs 251

NetXMS Administrator Guide, Release 5.2.0

Fig. 10: Template graph sources

There are two options to add sources to the template graph. Sources can be added manually by configuring the Data
Source parameters yourself or by importing data source information from DCI`s that have already been applied to other
nodes.

252 Chapter 14. Data and Network visualisation

NetXMS Administrator Guide, Release 5.2.0

When adding or editing a source, it is possible to use Java regex in the DCI Name and DCI Description fields. This can
be handy when used with the Multiple match option which will use all DCI`s that match the particular regex. The order
in which the DCI list is searched is first by DCI Name and then by DCI Description.

14.4 History
You can view collected data in a textual form, as a table with two columns - timestamp and value. To view values of
some DCI as a table, first open either Data Collection Editor or Last Values view for a host. You can do it from the Object
Browser or map by selection host, right-clicking on it, and selecting Data collection or Last DCI values. Then, select one
or more DCIs (each DCI data will be shown in separate view), right-click on them and choose Show history from the
pop-up menu. You will see the last 1000 values of the DCI.

14.5 Summary table
It is possible to see DCI data as a table where each line is one node and each column is a DCI. It can be configured for
each summary table which DCIs should be present on it.

14.5.1 Configuration
DCI summary table can be configured in Configuration -> Summary Table.

14.4. History 253

NetXMS Administrator Guide, Release 5.2.0

General:
• Menu path - path where this summary table can be found. You can use -> character pair to create subtree like
“Linux->System information”.

• Title - title of the summary table.
Columns:

• This is the list if DCI’s that will be shown on the summary table. Name is the name of column and DCI Name is
DCI parameter name.

– Multivalued column is intended to present string DCIs that contain several values divided by specified sepa-
rator. Each value is presented on a separate line in the column.

– If Use regular expression for parameter name matching is enabled, a regular expression is specified in
DCI name field. If several DCIs will be matched on a node, only one will be displayed.

• Import button allows to select a DCI from existing object.
Filter:

• Filter script is executed for each node to determine, if that node should be included in a summary table. Filter
script is defined with help of NXSL scripting language.

254 Chapter 14. Data and Network visualisation

NetXMS Administrator Guide, Release 5.2.0

14.5.2 Usage
After DCI summary table is configured it can be accessed in container object (Subnet, container…) context menu under
“Summary tables”.

14.5. Summary table 255

NetXMS Administrator Guide, Release 5.2.0

256 Chapter 14. Data and Network visualisation

CHAPTER

FIFTEEN

GRAFANA INTEGRATION

NetXMSGrafana integration provides the possibility to display important data using the Grafana platform and theNetXMS
WebAPI.

15.1 Integration with Grafana
The NetXMS Grafana datasource provides an alternative way of monitoring to that of the NetXMS Web and Desktop
consoles or the Android app, by using the Grafana platform and the NetXMS WebAPI.

15.1.1 Requirements
The following prerequisites need to be installed first:
A running instance of the NetXMS Server. A running instance of the NetXMS WebAPI. A running instance Grafana
(more information in https://grafana.com/get).

15.1.2 Installation
See https://grafana.com/grafana/plugins/radensolutions-netxms-datasource/?tab=installation
For installation from source:

1. Clone the NetXMS Grafana datasource GitHub repository from https://github.com/netxms/grafana.
2. Copy the files from the repository to GRAFANA_HOME/data/plugins/datasources/netxms
3. Restart your Grafana server.
4. Login to your Grafana web interface and add the NetXMS datasource in the Data Sources section.

15.1.3 Features
The datasource currently supports the following functionality:

• Visualization of configured data collection items for objects in graphs and tables.
• Listing of active alarms on a general or a per object basis

257

https://grafana.com/get
https://grafana.com/grafana/plugins/radensolutions-netxms-datasource/?tab=installation
https://github.com/netxms/grafana

NetXMS Administrator Guide, Release 5.2.0

15.2 Configuration

The data source can be configured in the data source management section in the Grafana web ui. The required settings
are the base URL of the NetXMS WebAPI, the username and the password of an account that exists on your NetXMS
server. It is suggested to create a dedicated account to be used with Grafana.

15.3 Alarm Browser

The data source provides the possibility to view currently active Alarms on all nodes or on a per node basis. To do this,
you need to add a new Table Panel to your Grafana dashboard and then edit the Metrics section of the panel settings. If
the NetXMS data source is set as the default data source, it should have been added to the panel automatically. If not,
select the name of the installed NetXMS data source from the Panel data source list and press Add query to add the data
source.`

258 Chapter 15. Grafana integration

NetXMS Administrator Guide, Release 5.2.0

Once the data source is added to the panel, it is necessary to set the necessary type of data for the data source to provide,
in this case - Alarms.

After the data type has been set, you should see the active alarms appear on the table panel. If you wish to view alarms
from specific nodes only, you can add multiple data sources to your table panel and for each specify the node you wish to
see the active alarms of.

15.4 Data Collection Items

15.4. Data Collection Items 259

NetXMS Administrator Guide, Release 5.2.0

The data source provides the possibility to visualize metrics collected from data collection items configured on nodes.
This can be achieved by adding a Graph Panel to your Grafana dashboard, adding the NetXMS data source to it and
selecting the DCI data type in the Metrics section of the graph panel settings. Once this is done, it is possible to select
the Target node from the list of targets which will then provide a list of the configured DCIs for the particular node in
the DCI section. By default, the legend of the data provided by the DCI will be the DCI description as configured on the
server. It is also possible to set a legend of your choice by entering it in the Legend section.

It is possible to view multiple DCIs on the same graph by adding multiple data sources to it.

260 Chapter 15. Grafana integration

CHAPTER

SIXTEEN

OPERATING SYSTEM MONITORING

Most OS-related metrics (file system, CPU, network) are provided by “platform subagent”, which is loaded automatically
by the agent on the startup.
List of available subagents:

• linux
• aix
• hpux
• winnt (all Windows flavors)
• sunos (Solaris)
• darwin (MacOS)
• freebsd
• netbsd
• openbsd

In this section we cover only most common metrics. Detailed list available bellow.

16.1 Example
In examples will be shown only DCI configuration with threshold. Generated event processing options can be found in
Event processing chapter.

16.1.1 Process monitoring
In this example monitoring of running “mysqld” process will be configured and one threshold will be added: when process
count is less then 1 (process is not running).
Create DCI for Process.Count(*) metric to monitor “mysqld” process count.

261

NetXMS Administrator Guide, Release 5.2.0

Create threshold. It will be triggered when process count is not equal to 1(process is not running). As prerequisite it was
created 2 events.

Fig. 1: Events

262 Chapter 16. Operating System Monitoring

NetXMS Administrator Guide, Release 5.2.0

Fig. 2: Threshold 1

As in message of error is used Instance parameter, it should be set in Threshold window.

16.1. Example 263

NetXMS Administrator Guide, Release 5.2.0

16.1.2 Disk free space monitoring
In this example monitoring of free space in percents for / disk will be configured and two thresholds will be added: when
disk space less then 15% and less then 7%.
Create DCI for FileSystem.FreePerc(*) metric to monitor space on /.

Create 2 thresholds. One will be triggered when free space is less than 15% and other one when free space is less than
7%. Before threshold creation was created 3 events:

264 Chapter 16. Operating System Monitoring

NetXMS Administrator Guide, Release 5.2.0

Fig. 3: Events

Fig. 4: Threshold 1

16.1. Example 265

NetXMS Administrator Guide, Release 5.2.0

Fig. 5: Threshold 2

As in message of error is used Instance parameter, it should be set in Threshold window.

Fig. 6: Both

266 Chapter 16. Operating System Monitoring

NetXMS Administrator Guide, Release 5.2.0

16.1.3 CPU usage
This example will show how to configure monitoring of CPU usage and create event when CPU usage is more than 90%
for more than 5 minutes.
Create DCI for System.CPU.LoadAvg metric.

Create threshold that will create event in case if last 5 values are more than 90 (last 5 minutes CPU usage is more than
90%).

16.1. Example 267

NetXMS Administrator Guide, Release 5.2.0

Fig. 7: Events

Fig. 8: Threshold

16.1.4 WMI
Windows Management Instrumentation subagent provides interface to Windows Driver Model and thus enables informa-
tion and notification gathering and further manipulation for monitoring purpose.
Configuration example:

268 Chapter 16. Operating System Monitoring

https://en.wikipedia.org/wiki/Windows_Management_Instrumentation

NetXMS Administrator Guide, Release 5.2.0

MasterServers = netxms.demo

SubAgent=wmi.nsm

Provides access to WMI data via WMI class queries. In below example, DCI New table … is created with NetXMS Agent
as Origin and WMI query as Metric

Following parameters are available for this subagent:

Parameter Description
ACPI.ThermalZone.CurrentTemp Current temperature in ACPI thermal zone.
ACPI.ThermalZone.CurrentTemp(*) Current temperature in ACPI thermal zone {instance}. Ar-

gument is thermal zone name, one of those returned by list
ACPI.ThermalZones (actually InstanceName from WMI class
MSAcpi_ThermalZoneTemperature).

Hardware.NetworkAdapter.Availability(*) Availability. Argument is physical network adapter index, one of those
returned by list Hardware.NetworkAdapters or column “INDEX” in table
Hardware.NetworkAdapters.

continues on next page

16.1. Example 269

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Parameter Description
Hardware.NetworkAdapter.Description(*) Description. Argument is physical network adapter index, one of those

returned by list Hardware.NetworkAdapters or column “INDEX” in table
Hardware.NetworkAdapters.

Hardware.NetworkAdapter.InterfaceIndex(*)InterfaceIndex. Argument is physical network adapter index, one of
those returned by list Hardware.NetworkAdapters or column “INDEX”
in table Hardware.NetworkAdapters.

Hardware.NetworkAdapter.MACAddress(*)MACAddress. Argument is physical network adapter index, one of those
returned by list Hardware.NetworkAdapters or column “INDEX” in table
Hardware.NetworkAdapters.

Hardware.NetworkAdapter.Manufacturer(*)Manufacturer. Argument is physical network adapter index, one of those
returned by list Hardware.NetworkAdapters or column “INDEX” in table
Hardware.NetworkAdapters.

Hardware.NetworkAdapter.Product(*) ProductName. Argument is physical network adapter index, one of those
returned by list Hardware.NetworkAdapters or column “INDEX” in table
Hardware.NetworkAdapters.

Hardware.NetworkAdapter.Speed(*) Speed. Argument is physical network adapter index, one of those re-
turned by list Hardware.NetworkAdapters or column “INDEX” in table
Hardware.NetworkAdapters.

Hardware.NetworkAdapter.Type(*) AdapterType. Argument is physical network adapter index, one of those
returned by list Hardware.NetworkAdapters or column “INDEX” in table
Hardware.NetworkAdapters.

System.AntiSpywareProduct.Active Anti-spyware product active.
System.AntiSpywareProduct.DisplayName Anti-spyware product display name.
System.AntiSpywareProduct.UpToDate Anti-spyware product up to date.
System.AntiVirusProduct.Active Anti-virus product active.
System.AntiVirusProduct.DisplayName Anti-virus product display name.
System.AntiVirusProduct.UpToDate Anti-virus product up to date.
System.FirewallProduct.Active Firewall active.
System.FirewallProduct.DisplayName Firewall product display name.
System.FirewallProduct.UpToDate Firewall product up to date.
WMI.Query(*) Generic WMI query. Arguments are namespace, query, property.

For example:
WMI.Query(rootcimv2, SELECT * FROM Win32_Process WHERE
ProcessId=252, Caption)

Following lists are available for this subagent:
• ACPI.ThermalZones
• Hardware.NetworkAdapters
• WMI.Classes(*), argument is WMI namespace (for example rootcimv2). List of available namespaces can also be
retrieved using agent list WMI.NameSpaces (output will not contain “root")

• WMI.NameSpaces
• WMI.Query(*), arguments are namespace, query, property (for example: WMI.Query(rootcimv2, SELECT *
FROMWin32_Process, Caption) - will return all process names)

Below list of supported tables for this subagent:
• Hardware.NetworkAdapters
• WMI.Query(*), arguments are namespace and query and it will return query output with column for each attribute
(for example: WMI.Query(rootcimv2, SELECT * FROMWin32_Process) - all processes in the system)

270 Chapter 16. Operating System Monitoring

NetXMS Administrator Guide, Release 5.2.0

Some of the most commonly used WMI classes are listed below:
Static

• Computer System - Win32_ComputerSystem
• Operating System - Win32_OperatingSystem
• Processor Info - Win32_Processor
• HDD - Win32_DiskDrive
• Disk Partitions - Win32_DiskPartition
• Logical Disks - Win32_LogicalDisk
• Logical Disk to Partition - Win32_LogicalDiskToPartition
• Memory - Win32_PhysicalMemory, Win32_PhysicalMemoryArray
• Network - Win32_NetworkAdapter , Win32_NetworkAdapterConfiguration

Performance Counters
• Processor Utilization - Win32_PerfRawData_PerfOS_Processor
• Memory Utilization - Win32_PerfRawData_PerfOS_Memory
• Network Utilization - Win32_PerfRawData_Tcpip_NetworkInterface

The result is a table with approprite WMI data.

16.1. Example 271

NetXMS Administrator Guide, Release 5.2.0

272 Chapter 16. Operating System Monitoring

CHAPTER

SEVENTEEN

FILE SYSTEM MONITORING

NetXMS has two options to monitor files: one is to use build in agent file monitoring functionality, that is described in
next chapter and another is to create DCI that will collect file information and create your own thresholds for collected
data. Second approach is describe in DCI Metrics for file system monitoring chapter.

17.1 File Monitoring
NetXMS provides a feature to monitor hash value of a file, last modification time and permissions changes. One file is
added to monitoring any changes to those file parameters will be detected and reported to the server via events. Those
events are SYS_AGENT_FILE_ADDED, SYS_AGENT_FILE_CHANGED and SYS_AGENT_FILE_DELETED for files cre-
ations, alterations and deletions correspondingly.
Specify the path to a file for monitoring by adding [FileMonitor] section to Agent configuration files. If the path to a
directory is specified, then all files in that directory and it’s subdirectories will be monitored.
Configuration parameters:

1. Path - The path to monitored file. This parameter should be specified once for each file/directory.
2. Interval - Check interval in seconds. This parameter should not be specified multiple times. This parameter is

optional and will be set to 6 hours by default.

Example

[FileMonitor]

Interval=10800

Path=/home/user/file_name

Path=/home/user/directory

17.2 DCI Metrics for file system monitoring
17.2.1 ‘FileSystem.*’ Metrics
Metrics with prefix ‘FileSystem’ are used to monitor file system. They provide information about free and user space,
inode information, etc.
Full list of available metrics can be found in FileSystem.* section.

17.2.2 ‘File.*’ Metrics
Metrics with prefix ‘File’ are used to monitor files. They provide information about file size, count, modification time, etc.
Full list of available metrics can be found in File.* section.

273

NetXMS Administrator Guide, Release 5.2.0

17.2.3 Examples
In examples will be shown only DCI configuration with threshold. Generated event processing options can be found in
Event processing chapter.

Example 1
In this example will be shown how to check that specific folder exceed specified size.
Create DCI for File.Size(*) metric to monitor folder size. Required parameters: /path,*,1.

In threshold it should be checked that last value is less than 2 GB. That mean that returned value should be less than 2
000 000 000 bytes.

274 Chapter 17. File System Monitoring

NetXMS Administrator Guide, Release 5.2.0

Fig. 1: Threshold

Example 2
In this example will be configured monitoring that in exact folder exist files that was modified less then half an hour ago.
Create DCI for File.Count(*) metric to monitor file count in folder /path, that match any pattern, folder should be checked
recursively, file match any size, files are created less than 30 minutes ago. This conditions will be given to metric as this
parameters: path,*,1,0,-1800.

17.2. DCI Metrics for file system monitoring 275

NetXMS Administrator Guide, Release 5.2.0

In threshold it should be checked that at least one file meeting conditions exists. That mean that file count should be more
than 1. Prerequisite is to create 2 events.

276 Chapter 17. File System Monitoring

NetXMS Administrator Guide, Release 5.2.0

Fig. 2: Events

Fig. 3: Threshold

As in message of error is used Instance parameter, it should be set in Threshold window.

17.2. DCI Metrics for file system monitoring 277

NetXMS Administrator Guide, Release 5.2.0

278 Chapter 17. File System Monitoring

CHAPTER

EIGHTEEN

LOG MONITORING

WithNetXMS you canmonitor changes in text log files,Windows Event Log, and built-in syslog server. All logmonitoring
done by agents, except for built-in syslog server. In general, most common log processing goes as following:

1. When new line added to log file, it is passed to appropriate log parser
2. If line matched one of the patterns, an event associated with this pattern is sent to NetXMS server.
3. Server receives event and passes it to event processing policy as usual, with event source set to node from which

event was received.
For text log files, agent keeps status information about monitored files in memory only. This means that if the agent was
stopped for a period of time, lines that were added to log file during that time will not be parsed.
For Windows Event Log, agent can keep status information in Windows registry. This function should be explicitly
enabled by setting ProcessOfflineEvents = true in LogWatch section. On agent start records that were added while the
agent was stopped will be parsed.
Log parser also provides some additional statistic information through Metrics. More information can be found in Log
parser metrics chapter.

18.1 Agent Configuration for Log Monitoring
To be able to monitor logs with NetXMS agent, you should load LOGWATCH subagent. There are two options to define
parser configuration:

1. Create log parser rule XML files on the monitored system and define them in LOGWATCH part of agent configuration.
2. Create log parser agent policy on a template and apply that template to all required nodes. This provides graphical

editor that allows to specify monitored files, conditions and events. Graphical editor automatically generates log
parser rule XML file that is being uploaded to agents. More information about Agent Policies

Example of agent configuration file:

SubAgent = logwatch.nsm

Below is log parsers definitions

[LOGWATCH]

Parser = C:\log_monitoring_definitions\parser1.xml

Parser = C:\log_monitoring_definitions\parser2.xml

279

NetXMS Administrator Guide, Release 5.2.0

18.2 Syslog Monitoring
NetXMS has built-in syslog server, which can be used to receive logs from network devices and servers. It is also pos-
sible to parse incoming syslog messages in a way similar to Windows Event Log monitoring. To parse syslog messages,
LOGWATCH subagent is not required - parsing is done by the server itself. You only need to define monitoring rules in
Configuration ‣ Syslog Parser

18.3 Parser Definition File
Parser definition file is an XML document with the following structure:

<parser>

<file>file name</file>

<!-- more <file> tags can follow -->

<macros>

<macro name="name">macro body</macro>

<!-- more <macro> tags can follow -->

</macros>

<rules>

<rule>

<match>regexp</match>

<id>event id</id>

<level>severity level</level>

<source>event source</source>

<event>event</event>

<context>context</context>

</rule>

<!-- more <rule> tags can follow -->

</rules>

</parser>

Note

Entire <macros> section can be omitted. Empty <rule> tag will match any line (like <rule> <match>.*</match>
</rule>).

18.4 Global Parser Options
In the <parser> tag you can specify the following options:

Op-
tion

Description Default
value

proces-
sAll

If this option set to 1, parser will always pass log record through all rules. If this option set to
0, processing will stop after first match.

0

name Parser name that is used in statistic information Metrics. See Log parser metrics for more
information.

empty

280 Chapter 18. Log monitoring

NetXMS Administrator Guide, Release 5.2.0

18.5 <file> Tag
In the <file> tag you should specify full path of log file to apply this parser to. To specify Windows Event Log, prepend
it’s name with asterisk (*), for example *System. Multiple <file> tags can be used - in this case same rules will be
applied to all files.
In the <file> tag it’s possible to use wildcards. Wildcards can be used in file name, not in directory names in the path.
Two wildcard characters are supported: * - represents zero, one or multiple characters. ? - represents any single character.
In file and folder names the following macros can be used:

• Environment variables as ${ENV_VAR_NAME}
• strftime(3C) macros (e.g. C:\Windows\system32\dhcp\DhcpSrvLog-%a)
• Text inside ` braces will be executed as a command and first line of output will be taken

Option Description Default value
encoding It is possible to specify the encoding of the log file

by adding the encoding attribute. File encodings
that can be defined:

• ACP

• UTF-8

• UCS-2

• UCS-2LE

• UCS-2BE

• UCS-4

• UCS-4LE

• UCS-4BE

When using UCS-2 or UCS-4 values, the endian-
ness of the system will be detected automatically.

By default, the parser will attempt to detect the en-
coding by scanning the file`s BOM.

preallo-
cated

Should be set when log file is preallocated (filled
with zeros) before logs get written into it.

0

snapshot Create VSS snapshot and uses snapshot file for
parsing. Can be used when log is opened by other
application as exclusive open. Windows only. Can
highly increase CPU usage.

0

keepOpen Defines if the file is kept open or reopened on each
parsing iteration.

1

ignore-
Modifica-
tionTime

Ignores modification time of log file 0

rescan When file modification is detected, parse the file
from it’s beginning. The file is also parsed on agent
startup and when log parsing policy is reapplied.

0

fol-
lowSym-
links

Follow symlinks. 0

re-
moveEscape-
Se-
quences

Remove ANSI escape sequences when reading file. 0

18.5. <file> Tag 281

http://www.unix.com/man-page/opensolaris/3c/strftime/
https://en.wikipedia.org/wiki/ANSI_escape_code

NetXMS Administrator Guide, Release 5.2.0

18.6 Macros
In the <macros> section you can define macros for use in matching rules. For example, it can be useful to define macro
for a timestamp preceding each log record and use it in matching rules instead of actual regular expression. You can
define as many macros as you wish, each within it’s own <macro> tag. Each macro should have unique name, defined in
name attribute, and can be used in matching rules in form @{name}.
Example: you need to parse log file where each line starts with timestamp in format dd/mm/yy HH:MM:SS. You can
define the following macro:

<macros>

<macro name="timestamp">dd/mm/yy HH:MM:SS</macro>

</macros>

<rules>

<rule>

<match>@{timestamp}.*([A-Za-z]+) failed.*</match>

<event>12345</event>

</rule>

<rule>

<match>@{timestamp}.*error.*</match>

<event>45678</event>

</rule>

</rules>

Please note that <macros> section always should be located before <rules> section in parser definition file.

18.7 Matching rules
In the <rules> section you define matching rules for log records.

18.7.1 <rule> Tag
Each rule is placed inside it’s own <rule> tag. Each rule can have additional options:

Option Description Default value
break If this option set to 1 and current linematch to regular expression in the rule, parser

will stop processing of current line, even if global parser option processAll was
set to 1. If this option set to 0 (which is default), processing will stop according
to processAll option settings.

0

context Name of the context this rule belongs to. If this option is set, rule will be processed
only if given context was already activated with <context> tag in one of the rules
processed earlier (it can be either same line or one of the previous lines).

empty

name Name of rule empty

Inside the <rule> section there are the following additional tags: <match>, <description>, <event>, and
<context>. Only <match> section is mandatory - it specifies regular expression against which log record should be
matched. All other tags are optional and define parser behavior if a record matches the regular expression.

282 Chapter 18. Log monitoring

NetXMS Administrator Guide, Release 5.2.0

18.7.2 <match> Tag
Tag <match> contains a PCRE compliant regular expression that is used to match log records. Parts enclosed in paren-
thesis are extracted from log record and passed as arguments of generated event. You can use macros defined in Macros
section. Also, it is possible to define inverted match rules (rules when log record considered matching if it does not
match regular expression). Inverted match can be set by setting attribute invert to 1. Other possible option that can be
configured is number of times that expression should be matched to generate event.
Some examples:

<match>^Error: (.*)</match>

This regular expression will match any line starting with word Error:, and everything after this word will be extracted
from the log record for use with an event.

<match repeatCount="3" repeatInterval="120" reset="false">[0-9]{3}</match>

This regular expression will match any line containing at least 3 consecutive digits. And event will be generated only if
this regular expression will be matched 3 or more times in 2 minutes(120 seconds). Matched count won’t be reset once
mark is reached, so if expression is matched more than 3 times in 2 minutes, event will be generated more than one time.

<match invert="1">abc</match>

This regular expression will match any line not containing character sequence abc.
Possible attributes for tag <match>:

Op-
tion

Description De-
fault
value

in-
vert

If this option set to true, it will be matched any line that does not contain matching expression. false

re-
peat-
Count

The number of times expression should be matched within specified time interval to generate event.
Actual count is passed to generated event as parameter. Setting this option to 0 disables this func-
tionality, event will be generated immediately on expression match.

0

re-
peat-
In-
ter-
val

The time interval during which the expression should be matched specified number of times. 1

reset If this option set to true, the count will be reset on expression match. In order to generate next event,
repeatCount number of matches should be accumulated again within repeatInterval time.

true

18.7.3 <id> Tag
Tag <id> can be used to filter records from Windows Event Log by event ID. You can specify either single event ID or
ID range (by using two numbers separated with minus sign). For example:

<id>7</id>

will match records with event ID equal 7, and

<id>10-20</id>

18.7. Matching rules 283

NetXMS Administrator Guide, Release 5.2.0

will match records with ID in range from 10 to 20 (inclusive). This tag has no effect for text log files, and can be used as
a synonym for <facility> tag for syslog monitoring.

18.7.4 <source> Tag
Tag <source> can be used to filter records from Windows Event Log by event source. You can specify exact event
source name or pattern with * and ? meta characters.
Some examples:

<source>Tcpip</source>

will match records with event source Tcpip (case-insensitive), and

<source>X*</source>

will match records with event source started from letter X. This tag has no effect for text log files, and can be used as a
synonym for <tag> tag for syslog monitoring.

18.7.5 <level> Tag
Tag <level> can be used to filter records fromWindows Event log by event severity level (also called event type in older
Windows versions). Each severity level has it’s own numeric value, and to filter by multiple severity levels you should
specify sum of appropriate values (bitmask). Severity level numerical values are the following:

Severity level Decimal value
Error 1
Warning 2
Information 4
Audit Success 8
Audit Failure 16
Critical (only on Windows 7/Windows Server 2008 and higher) 256

Some examples:

<level>1</level>

will match all records with severity level Error, and

<level>6</level>

will match all records with severity levelWarning or Information. This tag has no effect for text log files, and can be used
as a synonym for <severity> tag for syslog monitoring.

18.7.6 <facility> Tag
Tag <facility> can be used to filter syslog records (received by NetXMS built-in syslog server) by facility code. The
following facility codes can be used:

284 Chapter 18. Log monitoring

NetXMS Administrator Guide, Release 5.2.0

Code Facility
0 kernel messages
1 user-level messages
2 mail system
3 system daemons
4 security/authorization messages
5 messages generated internally by syslogd
6 line printer subsystem
7 network news subsystem
8 UUCP subsystem
9 clock daemon
10 security/authorization messages
11 FTP daemon
12 NTP subsystem
13 log audit
14 log alert
15 clock daemon
16 local use 0 (local0)
17 local use 1 (local1)
18 local use 2 (local2)
19 local use 3 (local3)
20 local use 4 (local4)
21 local use 5 (local5)
22 local use 6 (local6)
23 local use 7 (local7)

You can specify either single facility code or facility code range (by using two numbers separated by minus sign). For
example:

<facility>7</facility>

will match records with facility code equal 7, and

<facility>10-20</facility>

will match records with facility code in range from 10 to 20 (inclusive). This tag has no effect for text log files, and can
be used as a synonym for <id> tag for Windows Event Log monitoring.

18.7.7 <tag> Tag
Tag <tag> can be used to filter syslog records (received by NetXMS built-in syslog server) by content of tag field. You
can specify exact value or pattern with * and ? meta characters.
Some examples:

<tag>httpd</tag>

will match records with tag “httpd” (case-insensitive), and

<tag>X*</tag>

will match records with tag started from letter X. This tag has no effect for text log files, and can be used as a synonym
for <source> tag for Windows Event Log monitoring.

18.7. Matching rules 285

NetXMS Administrator Guide, Release 5.2.0

18.7.8 <severity> Tag
Tag <severity> can be used to filter syslog records (received by NetXMS built-in syslog server) by severity level. Each
severity level has it’s own code, and to filter by multiple severity levels you should specify sum of appropriate codes.
Severity level codes are following:

Code Severity
1 Emergency
2 Alert
4 Critical
8 Error
16 Warning
32 Notice
64 Informational
128 Debug

Some examples:

<severity>1</severity>

will match all records with severity level Emergency, and

<severity>6</severity>

will match all records with severity level Alert or Critical. This tag has no effect for text log files, and can be used as a
synonym for <level> tag for Windows Event Log monitoring.

18.7.9 <description> Tag
Tag <description> contains textual description of the rule.

18.7.10 <event> Tag
Tag <event> defines event to be generated if current log record match to regular expression defined in <match> tag.
Inside <event> tag you should specify event name or event code to be generated. All matched capture groups will be
given to the event as an event parameters.
Event tag has tag attribute. If the attribute is set, then it will be added to the selected event tag list.

18.7.11 <context> Tag
Tag <context> defines activation or deactivation of contexts. This option can be used for multi line match. First line
sets context and next generates event in case if context was set. Examples can be found further in Examples of Parser
Definition File section.
It has the following format:

<context action="action" reset="reset mode">context name</context>

Possible actions are:

286 Chapter 18. Log monitoring

NetXMS Administrator Guide, Release 5.2.0

Action Description
clear Deactivate (clear “active” flag of) given context.
set Activate (set “active” flag of) given context.
reset Defines how context will be deactivated

Possible values for reset mode are:

Reset
mode

Description

auto Deactivate context automatically after first match in context (match rule with context attribute set to
given context).

manual Context can be deactivated only by explicit <context action="clear"> statement.

Both action and reset attributes can be omitted; default value for action is set, and default value for reset is
auto.

18.7.12 <exclusionSchedules> Tag
Tag <exclusionSchedules> defines time when file should not be parsed. Each cron expression should be defined in
<schedule>. This should be used to define time when file should not be opened. Once time does not match cron file
will be reopened and all added lines will be parsed. See Cron format for supported cron format options.
Example:

<parser>

<file>/var/log/messages</file>

<rules>

<rule>

<match>error</match>

<event>USR_APP_ERROR</event>

</rule>

</rules>

<exclusionSchedules>

<schedule>0-2 0 * * *</schedule>

</exclusionSchedules>

</parser>

18.8 Examples of Parser Definition File
Generate event with name USR_APP_ERROR if line in the log file /var/log/messages contains word error:

<parser>

<file>/var/log/messages</file>

<rules>

<rule>

<match>error</match>

<event>USR_APP_ERROR</event>

</rule>

</rules>

</parser>

18.8. Examples of Parser Definition File 287

NetXMS Administrator Guide, Release 5.2.0

Generate event with name SYS_PROCESS_START_FAILED if line in the log file C:\demo.log contains word process:
and is immediately following line containing text process startup failed; everything after word process: will
be sent as event’s parameter:

<parser>

<file>C:\demo.log</file>

<rules>

<rule>

<match>process startup failed</match>

<context action="set" reset="auto">STARTUP_FAILED</context>

</rule>

<rule context="STARTUP_FAILED">

<match>process:(.*)</match>

<event>SYS_PROCESS_START_FAILED</event>

</rule>

</rules>

</parser>

18.9 Passing parameters to events
The log parser adds parameters to events. For non-Windows platforms the following parameters are provided:

Number Description
1 to n Capture groups
n+1 Event tag (if set in log parser policy configuration, otherwise this field is omitted)
n+2 Repeat count - how many times this rule was matched previously.

For Windows the following parameters are provided:

Number Description
1 to n Capture groups
n+1 Event tag (if set in log parser policy configuration, otherwise this field is omitted)
n+2 Windows publisher name
n+3 Windows event id
n+4 Windows severity
n+5 Windows record Id
n+6 Repeat count - how many times this rule was matched previously.
n+7 to k Windows event strings

Consider the following line is received via syslog, or added to a monitored file:

24.04.2015 12:22:15 1 5 system,error,critical login failure for user

testUser from 11.2.33.41 via ssh

We can extract username and login method from the syslog message, and pass it as parameters to an event with the
following rule:

<match>system,error,critical login failure for user (.*) from .* via

(.*)</match> <event>10000</event>

Username will be sent to the event as %1, IP address will not be sent, and login method will be sent as %2.

288 Chapter 18. Log monitoring

NetXMS Administrator Guide, Release 5.2.0

18.10 Log parser metrics
Log parser provides some additional statistic information through Metrics. Metrics take name of particular parser as an
argument. If name is not set, then file name is used.
Statistic information is reset on agent startup and when log parser policy is reapplied.
Available metrics:

Metric
Name

Description

Log-
Watch.Parser.Status(name)

Parser name status

Log-
Watch.Parser.MatchedRecords(name)

Number of records matched by parser name

Log-
Watch.Parser.ProcessedRecords(name)

Number of records processed by parser name

Available lists:

List
Name

Description

Log-
Watch.ParserList

List of parser names. If no name is defined then parser file name will be used.

18.10. Log parser metrics 289

NetXMS Administrator Guide, Release 5.2.0

290 Chapter 18. Log monitoring

CHAPTER

NINETEEN

WINDOWS EVENT LOG SYNCHRONIZATION

NetXMS can collect and centrally store Windows event logs. Collection is performed by NetXMS agents. It’s possible to
filter by log type, Source and Event IDs at agent side to reduce network traffic consumption.
Windows events received by NetXMS server are stored in the database and can later be viewed in View ‣ Windows event
log. Upon reception event logs can be parsed according to rules and NetXMS events can be generated.

19.1 Agent Configuration for Event Log Synchronization
Agent configuration to enable Windows Event Log Synchronization can be done in two ways:

1. In agent’s configuration file
2. Using Agent Configuration policy. For more information see Agent Policies.

Windows Event Log Synchronization subagent should be enabled in agent configuration:

SubAgent=wineventsync.nsm

Logs that should be monitored (Application, Security, etc) are specified in WinEventSync section:

[WinEventSync]

EventLog=Application

EventLog=Security

EventLog=System

With above configuration all records in the specified logs will be synchronized. It is possible to configure per-log set-
tings to filter only part of records. Per-log configuration is specified in sections named according to log name, e.g.
WinEventSync/System.
Filtering is done in two stages. First is pre-filter, which allows to independently filter events by Event ID, Source and
Severity level. Second stage - Filter (added in version 5.2) allows to define chain of rules to filter by combinations of
Event ID, Source and Severity level.

19.1.1 Pre-filter
Event ID
Filtering by Event IDs is done using options IncludeEvent and ExcludeEvent. You can configure a range like 100-
200. Comma separated lists are not supported, you can however add multiple Include/ExcludeEvent lines.
By default, if no IncludeEvent or ExcludeEvent are given, all IDs in that log will be synced. Explicit Includes
override Excludes. So if you configure an IncludeEvent=201 and an ExcludeEvent=200-300, you will receive all Events
except 200 and 202-300.

291

NetXMS Administrator Guide, Release 5.2.0

To exclude all Event IDs, use ExcludeEvent=0-65535, then you can use IncludeEvent to select only the IDs you
need.

[WinEventSync/Security]

IncludeEvent=4624-4625

IncludeEvent=4800-4803

ExcludeEvent=0-65535

Source
Filtering by Source is done using options IncludeSource and ExcludeSource. By default, if no IncludeSource
are ExcludeSource are given, all sources in that log will be synchronized. You can use ExcludeSource=* to exclude
every source and specify IncludeSource to override the exclude for specific sources.

[WinEventSync/System]

IncludeSource=Microsoft-Windows-WindowsUpdateClient

ExcludeSource=*

Severity level
Filtering by severity level (also called event type in olderWindows versions) is done using option SeverityFilter. Each
severity level has it’s own numeric value, and to filter by multiple severity levels you should specify sum of appropriate
values (bitmask). Or alternatively you can specify severity level names separated by commas. Below are level names and
their values:

Severity level name Hexadecimal value Decimal value
Error 0x001 1
Warning 0x002 2
Information / Info 0x004 4
AuditSuccess 0x008 8
AuditFailure 0x010 16
Critical 0x100 256

Below examples will have same result of filtering only Warning and Error records:

[WinEventSync/System]

SeverityFilter = 0x012

[WinEventSync/System]

SeverityFilter = 18

[WinEventSync/System]

SeverityFilter = Warning,Error

19.1.2 Filter
Added in version 5.2.

This stage allows to specify chain of rules to filter by combinations of Event ID, Source and Severity level. Rules are
specified using Filter option.

292 Chapter 19. Windows Event Log Synchronization

NetXMS Administrator Guide, Release 5.2.0

Filter = Action:Source:Id:Severity

Name Re-
quired

Description

Action Yes Either accept or reject
Source No Name of event source. Two wildcard characters are supported: * - represents

zero, one or multiple characters. ? - represents any single character.
Id No Event ID. Ranges are supported (e.g. 4800-4803). * means any ID.
Severity No Severity level. Bitmask or comma-separated severity level names are supported in

same way as in pre-filter. * means any severity level.

If event matches specific rule, then it is accepted or rejected, depending on action set for this rule. Unmatched events pro-
ceed to subsequent rules. If event is not matched by any rule, it is accepted - it is recommended to have Filter=reject
as the last rule to avoid that.
Agent log mesages related to windows event log synchronization are written with tag winsyncevent. For debugging you
can add DebugTags=winsyncevent:6 to agent configuration - this will set debug level 6 for that tag.

19.2 Server Configuration for Event Log Synchronization
Upon being received on server Windows events are parsed accoriding to rules defined in Configuration ‣ Windows event
parser. Rules can be edites in two ways - using graphical editor or XML editor. When switching from one editor to
another all entered information is automatically converted.
If Process all checkbox is not set, rules are processed until first match. If it’s set, all rules are always processed.
In the Macros section you can define macros for use in matching rules. For example, it can be useful to define macro for
IP address and use it in matching rules instead of actual regular expression. You can define as many macros as you wish.
Each macro should have unique name, and can be used in matching rules in form @{name}.
A rule can have multiple conditions - regular expression match, severity level, Event ID, Source, log type.
Matching regular expression contains a PCRE compliant regular expression that is used to match Windows event log
records. Parts enclosed in parenthesis are extracted fromWindows event log record and passed as arguments of generated
NetXMS event. You can use macros defined in Macros section. If Invert checkbox is set, Windows event log record will
be considered matching if it does not match regular expression.
Level can be used to filter records fromWindows Event log by event severity level (also called event type in older Windows
versions). Each severity level has it’s own numeric value, and to filter by multiple severity levels you should specify sum
of appropriate values (bitmask). Severity level numerical values are the following:

Severity level Decimal value
Error 1
Warning 2
Information 4
Audit Success 8
Audit Failure 16
Critical (only on Windows 7/Windows Server 2008 and higher) 256

Id can be used to filter records from Windows Event Log by event ID. You can specify either single event ID (e.g. 7) or
ID range by using two numbers separated with minus sign (e.g. 10-20 will match records with ID in range from 10 to
20 inclusive).

19.2. Server Configuration for Event Log Synchronization 293

NetXMS Administrator Guide, Release 5.2.0

Source can be used to filter records from Windows Event Log by event source. You can specify exact event source name
or pattern with * and ? meta characters. E.g. Tcpip will match records with event source Tcpip (case-insensitive), and
X* will match records with event source started from letter X.
Log name allows to filter records by Windows Event Log name. You can specify exact name or pattern with * and ?meta
characters.
Description contains textual description of the rule. It is printed in parser trace in the log file.
When a rule is matched the following actions can be performed:

• Generate NetXMS event. Event generation is optional - it could be useful to have rules that work as exclusion -
match specific conditions and do not perform any actions.

• Break. In this case the following rules will not be processed even if Process all is set.
• Do not save to database. If this is set, mached Windows Event Log record will not be saved to the database.

19.3 Passing parameters to events
The log parser can send parameters to events. All capture groups will be sent to the event as parameters.

Number Description
1…n Capture groups

294 Chapter 19. Windows Event Log Synchronization

CHAPTER

TWENTY

SSH MONITORING

20.1 SSH configuration
NetXMS can execute commands via an SSH connection and save the output as DCI values.
SSH connections are always established via an agent. For this to work, the ssh.nsm subagent should be enabled in the
agent config file.
The subagent uses the built-in libssh. It reads the configuration in standard ssh format from ~/.ssh/config. It is also
possible to specify a custom location for the configuration file by adding ConfigFile= to the [SSH] section of the agent
configuration file.
If zoning is not used, the agent running on the NetXMS server is used for SSH connections. If zoning is used, zone
proxies are used. If a zone has no proxies configured, the agent on the NetXMS server is used as a last resort.
The username and password are specified in Node properties -> Communications -> SSH. The same properties page can
used to specify an ssh port for node, the proxy for ssh polling and an ssh key if required. If a proxy node is specified on
this property page, the connection will be performed via that node only.

In DCI properties the SSH origin should be chosen. The parameter is the actual ssh command that is executed.

295

NetXMS Administrator Guide, Release 5.2.0

Only the first line of the output is stored as a DCI value. For numeric data type output is parsed from its beginning until
the first non-numeric character.

There is also the SSH.Command(*) metric of origin NetXMS Agent that works in a similar way, but where target and
credentials are specified as arguments. It is also necessary to manually specify the Source node, otherwise the agent of
the monitored node will be used for establishing the ssh connection.

Metric Name Description
SSH.Command(target,login,password,command,[pattern],[ssh_key_id]) %{node_primary_ip} macro can

be used to specify the nodes primary
IP address as target.

20.2 SSH key configuration
An SSH key can be added in Configuration ->SSH key configuration and then used in the object configuration for the SSH
connection.

296 Chapter 20. SSH monitoring

NetXMS Administrator Guide, Release 5.2.0

20.2. SSH key configuration 297

NetXMS Administrator Guide, Release 5.2.0

298 Chapter 20. SSH monitoring

CHAPTER

TWENTYONE

NETWORK SERVICE MONITORING

There are two options to add service monitoring: the first one is to add it through node menu option Create –> Create
Network Service… as an object with the status that will be propagated on a node, and the second one is to add it’s monitoring
as DCI.
In both cases monitoring is done by the help of NetXMS agent. In agent’s configuration file NetSVC subagent should be
enabled.

21.1 Network Service Object
Object representing network service running on a node (like http or ssh), which is accessible online (via TCP IP). Network
Service objects are always created manually. Currently, the system works with the following protocols - SSH, POP3,
SMTP, FTP, HTTP, HTTPS, Telnet and Custom protocol type. For Custom protocol, user should define TCP port
number and the system will be checking if it’s possible to establish connection to that port. For the predefined standard
services the system will also check whether an appropriate response is returned. In case of SMTP, the system will send a
test mail, in case of POP3 - try to log in with a certain user, in case of HTTP - check whether the contents of a desired web
page correspond to a certain given template. As soon as the Network Service object is created, it will be automatically
included into the status poll. Each time when the status poll for the particular node is carried out, all Network Service
objects are polled for a reply. If an object’s reply corresponds to a certain condition, its status is set as NORMAL. If an
object is not responding, it’s status will be changed to CRITICAL. It is possible to create a DCI that will collect status of
Network Service object.

In default configuration request is done with the help of NetXMS agent (by it’s NetSVC subagent) on the server node. If
it should be done through different node is should be changed in it’s properties after service creation by selecting Poller
node. There is also possibility to set number of polls that is required to be sure that state have changed.

299

NetXMS Administrator Guide, Release 5.2.0

21.2 Network service monitoring using DCI
Second option is to use DCI to monitor service. Service monitoring metrics are provided NetXMS agent (by it’s NetSVC
subagent). DCIs should either be created on the node where agent is running, or they can be created on another node and
the node with agent can be specified in Source node override in DCI’s properties.
More about URL options can be found there: https://curl.se/docs/url-syntax.html
This subagent will add the following metrics to list of metrics available on agent:

Metric Name Description
HTTP.Checksum.MD5(URL, [named pa-
rameters])
HTTP.Checksum.SHA1(URL, [named
parameters])
HTTP.Checksum.SHA256(URL, [named
parameters])

Calculate hash for the provided URL. Port number can be specified in
the URL. http and https schemes are supported in the URL. Calculates
hash only if web server returns 200 status code.
Starting from second parameter this metric accepts named parameters in
name = value form. When parameter(s) are used, they should be used
without [].
The following parameters are supported (all parameters are optional):

• follow-location - true - follow redirects which web server sends as
part of an HTTP header in a 3xx response; false (default) - do not
follow redirects

• timeout - timeout in milliseconds
• verify-host - true (default) - verify that host name from URL
matches one from certificate (CURLOPT_SSL_VERIFYHOST =
2); false - do not verify that host name from URL match one from
certificate (CURLOPT_SSL_VERIFYHOST = 0)

• verify-peer - true (default) - verify peer certificate; false - do not
verify peer certificate.

continues on next page

300 Chapter 21. Network Service Monitoring

https://curl.se/docs/url-syntax.html

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Metric Name Description
NetworkService.Status(URL, [named pa-
rameters])

Check status of network service and return numeric value denoting the
result. Port number can be specified in the URL. URL supports the fol-
lowing schemes: http, https, ssh, telnet, tcp, smtp and smtps.
For ssh protocol connection is established. For telnet it’s checked that
host sends some characters after connection is established. For tcp only
ability to establish connection to specified port is checked. For smtp and
smtps test email is being sent.
Starting from second parameter this metric accepts named parameters in
name = value form. When parameter(s) are used, they should be used
without [].
Optional parameter supported for all schemes:

• timeout - timeout in milliseconds
Parameters supported for http and https schemes (all parameters are op-
tional):

• follow-location - true - follow redirects which web server sends as
part of an HTTP header in a 3xx response; false (default) - do not
follow redirects

• include-headers - if set to true (default), pattern is matched within
headers and body of the web page. If set to false, pattern is
matched in web page body only.

• pattern - regular expression to match.
• response-code - web server response code to match.

Parameters supported for smtp and smtps schemes:
• to - test email will be sent to this address. Obligatory parameter
• from - test email will be sent from this address. Optional parame-
ter, default value depends on configuration of NetSVC subagent.

Parameters supported for all schemas except ssh, telnet, tcp:
• verify-host - true (default) - verify that host name from URL
matches one from certificate (CURLOPT_SSL_VERIFYHOST =
2); false - do not verify that host name from URL match one from
certificate (CURLOPT_SSL_VERIFYHOST = 0)

• verify-peer - true (default) - verify peer certificate; false - do not
verify peer certificate.

• tls-mode - TLS mode that should be used. One of: none, try, al-
ways

• login - login
• password - password (can be encrypted by nxencpasswd tool)

Metric returns one of the following values:
• 0 - Success, connection to target was established and expected re-
sponse was received.

• 2 - Can not connect to target (connection refused or connection
timeout)

• 3 - Invalid / unexpected response from target (e.g. pattern or
response-code not matched)

• 4 - Agent internal error
• 5 - Protocol handshake error (e.g. wrong data or no data expected
by protocol received, SSL certificate problem)

continues on next page

21.2. Network service monitoring using DCI 301

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Metric Name Description
NetworkService.ResponseTime(URL,
[named parameters])

Measures response time, returns value in milliseconds. For http and https
schemas time to fully load the web page is measured. Metric support
same parameters as NetworkService.Status.

NetworkService.TLSStatus(host, port,
[named parameters])

Check remote TLS service and return return numeric value denoting the
result.
Starting from third parameter this metric accepts named parameters in
name = value form. When parameter(s) are used, they should be used
without []. The following optional parameter is supported:

• timeout - timeout in milliseconds
Metric returns one of the following values:

• 0 - Success, connection to target was established and expected re-
sponse was received.

• 2 - Can not connect to target (connection refused or connection
timeout)

• 3 - Invalid / unexpected response from target
• 4 - Agent internal error
• 5 - Protocol handshake error

NetworkService.TLSResponseTime(host,
port, [named parameters])

Measures time to perform TLS handshake, returns value in milliseconds.
Metric support same parameters as NetworkService.TLSStatus.

TLS.Certificate.ExpirationDate(host,
port)

Returns expiration date (YYYY-MM-DD) of X.509 certificate of remote
TLS service

TLS.Certificate.ExpirationTime(host,
port)

Returns expiration time (Unix time) of X.509 certificate of remote TLS
service

TLS.Certificate.ExpiresIn(host, port) Returns number of days until expiration of X.509 certificate of remote
TLS service

TLS.Certificate.Issuer(host, port) Returns issuer of X.509 certificate of remote TLS service
TLS.Certificate.Subject(host, port) Returns subject of X.509 certificate of remote TLS service
TLS.Certificate.TemplateID(host, port) Returns template ID of X.509 certificate of remote TLS service

21.2.1 Examples
NetworkService.Status(http://www.netxms.org)

This metric will return 0 (success). In this case we are just checking that web server provides response, without
checking for pattern or status code (which is 301 in this case, as we receive redirect to https://www.netxms.org/)

NetworkService.Status(http://www.netxms.org, response-code=200)

Returns 3 (unexpected response) as response code (301) does not match the value we are checking for.

NetworkService.Status(http://www.netxms.org, follow-location=true, response-code=200)

Returns 0 (success) as it follows redirects and ultimately gets web page with response code 200.

NetworkService.Status(https://netxms.org, pattern="^HTTP\/(1\.[01]|2) 200 .*")

Here we are checking for specific pattern both in headers and web page (include-headers parameter is not specified and
it’s default value is true).

302 Chapter 21. Network Service Monitoring

https://www.netxms.org/

NetXMS Administrator Guide, Release 5.2.0

NetworkService.Status(http://www.netxms.org, include-headers=false, pattern=".*Moved

Permanently.*")

Checking for specific pattern only in web page itself, but not in headers.

NetworkService.Status(https://a.web.site.with.self.signed.certificate)

Returns 5 (Protocol handshake error) because libcurl can not verify the self-signed certificate.

NetworkService.Status(https://a.web.site.with.self.signed.certificate,

verify-peer=false)

Returns 0 (Success) as we disabled peer certificate verification.

NetworkService.Status(tcp://netxms.org:80)

Returns 0 (Success) as we were able to establish TCP connection to port 80

NetworkService.Status(tcp://netxms.org:88, timeout=2000)

Returns 2 (Timeout) as it was not possible to establish TCP connection to port 1. Waits for 2 seconds according to
timeout that we have specified.

NetworkService.ResponseTime(https://www.google.com)

Returns time in milliseconds it took to fully retrieve the web page from the server.

NetworkService.TLSStatus(netxms.org, 443)

Returns 0 (success). This only performs TLS handshake, without retrieving any web page from the server.

NetworkService.TLSResponseTime(www.google.com, 443)

Returns the time it takes to perform TLS handshake with the server.

21.3 NetSVC configuration
This subagent performs network services checks by employing libcurl. More information about syntax can be found here:
http://curl.haxx.se/docs/manpage.html.

Note

If agent is build from sources, then libcurl-dev should be installed to build netsvc subagent.

To operate, NetSVC subagent should be loaded. All configuration parameters related to NetSVC subagent should be
placed into [netsvc] section of agent’s configuration file. The following configuration parameters are supported:

21.3. NetSVC configuration 303

http://curl.haxx.se/docs/manpage.html

NetXMS Administrator Guide, Release 5.2.0

Parameter Description Default value
CA Path to a file holding one or more certificates to verify the peer

with (CURLOPT_CAINFO)
DomainName Used in SMTP check. Default from email address is composed

as noreply@DomainName.
netxms.org

NegativeResponseTimeOnError For metrics that measure response time, return negative time
value instead of data collection error.

false

VerifyPeer Verify peer certificate true
Timeout Timeout in milliseconds.

Agent’s configuration file example:

SubAgent = netsvc

[netsvc]

Timeout = 3000

304 Chapter 21. Network Service Monitoring

CHAPTER

TWENTYTWO

DATA COLLECTION FROM WEB SERVICES

NetXMS has a built-in data collection mechanism using web services, allowing to extract data for DCIs from JSON,
XML, or plain text responses to HTTP requests. Data collection from web services is done via the NetXMS agent. If
zoning is not used (or for the Default zone), the agent running on the NetXMS server is used. If zoning is used, zone
proxies are used (and if a zone has no proxies configured, the agent on NetXMS server is used as last resort).

22.1 Configuring Web Service Data collection
22.1.1 Agent configuration
Starting from version 3.8 of the NetXMS agent, data collection from web services is disabled by default. To enable it,
add EnableWebServiceProxy=yes to the agent configuration file and restart the agent.

22.1.2 Web service definitions
Common configuration related to multiple metrics and nodes is set up in the web service definition editor accessible via
the Configuration -> Web Service Definitions menu.

305

NetXMS Administrator Guide, Release 5.2.0

The following parameters can be configured:
• Web service name
• Web service URL
• Additional HTTP headers
• Authentication data (authentication type, login, password)
• Cache retention time (in seconds)
• Request timeout (in seconds)

The web service URL and additional HTTP headers fields can contain macros that are expanded when the actual request
is made. So you can, for example, set the URL as %{url} and keep the actual URL in a custom attribute of the node
with the name url.

22.1.3 DCI Configuration
DCI configuration provides the DCI origin “web service”. Metric name for this origin contains the web service definition
name with optional arguments and the path to the document element that has to be retrieved, or a PCRE compliant regex
with one capture group for text responses.
For example:

• WebService1:/system/cpu/usage

• WebService2(eth0):/stat/bytesIn

• WebService3(10,20,30):^(\d*)

Service arguments can be inserted into the request URL or headers using macros %1, %2, and so on. For XML and
JSON responses, the path to the document element should start with /. An XML response, according to the standard,
should only have one upper level tag. For text responses, the first capture group of the regular expression is returned.

22.1.4 Instance discovery
For web service discovery the “Web Service” instance discovery method can be used. It accepts a web service name with
optional arguments and the path to the root element of the document where enumeration will start. Each sub-element of
a given root element will be considered as a separate instance.
For example:

• WebService1:/system/cpu will enumerate all elements under “/system/cpu”
• WebService2(eth0):/stat will enumerate all elements under “/stat”

22.2 Data collection process
The data collection process from the server point of view is:
1. The server finds the web service definition by the given name, passes any parameters to it, and gets back the URL and
headers with all macros expanded.
2. The server determines the agent to be used for the request based on zone settings, node settings, agent availability, etc.
3. The server sends the request to the selected agent. A request consists of an URL, headers, and document path.
4. The server waits for a response from the agent and processes the retrieved data similar to any other DCI type. For
instance, the discovery server provides a new instance discovery method - “web service” which accepts a web service name
with optional arguments and path to the root element of the document where enumeration will start. Each sub-element
of the given root element will be considered a separate instance.

306 Chapter 22. Data Collection from Web Services

NetXMS Administrator Guide, Release 5.2.0

Actual requests and response parsing is implemented on the agent level. This provides the necessary flexibility for ac-
cessing services not directly reachable from the management server as well as offloads response parsing from the server
to agents.
The data collection process from the agent point of view is:
1. The agent receives a web service request (URL, authentication data, headers) and list of elements to retrieve from the
server.
2. The agent checks the document cache if the requested URL was already retrieved and data is within configured cache
retention time. If so, values of the requested elements from cached data are returned to the server.
3. The agent performs an HTTP request using the provided service data. If the request is successfully retrieved, the docu-
ment is parsed into tree form and values of the requested elements are returned to the server. No additional configuration
should be required on the agent side.

22.3 Examples
This example shows how to use the same web service JSON output for instances and then to collect data.
We assume that the configuration is already done and we have a web service with the “WebService1” name, that returns
a JSON data structure as:

[

{

"name": "Object1",

"status": "Online",

"position": "Front"

},

{

"name": "Object2",

"position": "Back"

},

{

"name": "Object3",

"status": "Ofline",

"position": "Front"

}

]

Form this JSON document we want to get a separate DCI for each object. We will collect status if exist and will set status
to Ofline if the object does not contain status parameter.
The DCI will have the following configuration:

• Instance discovery method: Web Service
• Web service request: WebService1:[.[].name]
This will create an array with names. Each name will be taken as an instance:

["Object1", "Object2", "Object3"]

• Origin: Web service
• Metric: (.[] | select(.name == “{instance}”).status) // “failed”
This configuration will get the status for the object with name like {instance} (will be replaced by its real name on
instance discovery) and it will return “failed” if this object does not contain the status field.

22.3. Examples 307

NetXMS Administrator Guide, Release 5.2.0

308 Chapter 22. Data Collection from Web Services

CHAPTER

TWENTYTHREE

MODBUS

Added in version 4.4.
NetXMS can collect data via the Modbus-TCP protocol. Data collection is performed by the NetXMS server or by
NetXMS agents operating in proxy mode.
To enable agent operation as a Modbus proxy, add EnableModbusProxy=yes to the agent configuration file and restart
the agent.
The metric for Modbus data collection items has a special format denoting the type of Modbus unit id, register type,
register address and the way how obtained data should be interpreted:
[[unit-id:]register-type:]register-address[|conversion]

Metric component Description
unit-id Modbus unit ID. Optional, if used, should be specified without []. To use it,

register-type should also be provided.
register-type Type of Modbus register. Optional, if not specified, hold will be used. Should be

specified without [] if used. Supports following values:
• coil - Coil
• discrete - Discrete Input
• hold - Holding Register
• input - Input Register

register-address Address of Modbus register. Can be provided as decimal number or hexadecimal num-
ber prefixed by 0x.

continues on next page

309

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Metric component Description
conversion Conversion of Modbus data. Optional, if not specified, uint16 will be used. Should

be specified without [] if used. Affects the number of Modbus registers being read and
how read data is interpreted:

• int16 - 16 bit signed integer
• uint16 - 16 bit unsigned integer
• int32 - 32 bit signed integer (will read 2 registers)
• uint32 - 32 bit unsigned integer (will read 2 registers)
• int64 - 64 bit signed integer (will read 4 registers)
• uint64 - 64 bit unsigned integer (will read 4 registers)
• float - same as float-abcd
• float-abcd - 4 byte floating point number, ABCD byte order
• float-cdab - 4 byte floating point number, CDAB byte order
• float-badc - 4 byte floating point number, BADC byte order
• float-dcba - 4 byte floating point number, DCBA byte order
• double - same as double-be
• double-be - 8 byte floating point number, big endian byte order
• double-le - 8 byte floating point number, little endian byte order
• string-N - string of N characters (will read (N + 1) / 2 registers)
• string-N-CP - string of N characters encoded using codepage CP (will read (N
+ 1) / 2 registers)

23.1 Modbus metric examples
0x2A

Read holding register at address 2A hexadecimal (42 decimal), interpret as uint16.

input:8

Read input register at address 8 decimal, interpret as uint16.

10|int16

Read holding register at address 10 decimal, interpret as int16.

input:55|float

Read two input registers starting from 55 decimal, interpret as float with ABCD byte order.

310 Chapter 23. Modbus

CHAPTER

TWENTYFOUR

DATABASE MONITORING

There are several subagents for database monitoring: DB2, Informix, Oracle, MySQL, MongoDB, PostgreSQL. Below
we will describe how to configure and use these subagents. Besides it’s also possible to monitor other types of databases
supported by NetXMS server(link to supported database list) using database query subagent as these databases support
receiving performance parameters using queries. This subagent details are described in Application Database Monitoring
chapter.

24.1 Oracle
NetXMS subagent for Oracle DBMS monitoring (further referred to as Oracle subagent) monitors one or more instances
of Oracle databases and reports various database-related metrics.
All metrics available from Oracle subagent are collected or calculated once per minute thus it’s recommended to set DCI
poll interval for these items to 60 seconds or more. All metrics are obtained or derived from the data available in Oracle’s
data dictionary tables and views through regular select queries. Oracle subagent does not monitor any of the metrics
related to lower level database layers, such as database processes. Monitoring of such metrics can be achieved through
the standard NetXMS functionality.

24.1.1 Pre-requisites
An Oracle user with the role select_catalog_role assigned.
Required rights can be assigned to user with the following query:

grant select_catalog_role to user;

Where user is the user configured in Oracle subagent for database access.

24.1.2 Configuration file
Oracle subagent can be configured using XML configuration file (usually created as separate file in configuration include
directory), or in simplified INI format, in main agent configuration file (nxagentd.conf).
Database definition supports the following parameters:

311

NetXMS Administrator Guide, Release 5.2.0

Parameter Description Default value
Id Database identifier. It will be used to address this database in parameters.
TnsName Database TNS name or connection string.
ConnectionTTL Time in seconds. When this time gets elapsed, connection to the DB is

closed and reopened again.
3600

Username User name for connecting to database.
Password Database user password. When using INI format, remember to enclose

password in double quotes (“password”) if it contains # character. This
parameter automatically detects and accepts password encrypted with nx-
encpasswd tool.

EncryptedPass-
word

Database user password encrypted with nxencpasswd tool. DEPRE-
CATED. Use Password instead.

XML configuration allows to specify multiple databases in the oracle section. Each database description must be sur-
rounded by database tags with the id attribute. It can be any unique integer and instructs the Oracle subagent about the
order in which database sections will be processed.
Sample Oracle subagent configuration file in XML format:

<config>

<agent>

<subagent>oracle.nsm</subagent>

</agent>

<oracle>

<databases>

<database id="1">

<id>DB1</id>

<tnsname>TEST</tnsname>

<username>NXMONITOR</username>

<password>NXMONITOR</password>

</database>

<database id="2">

<id>DB2</id>

<tnsname>PROD</tnsname>

<username>NETXMS</username>

<password>PASSWORD</password>

</database>

</databases>

</oracle>

</config>

You can specify only one database when using INI configuration format. If you need to monitor multiple databases from
same agent, you should use configuration file in XML format.
Sample Oracle subagent configuration file in INI format:

[ORACLE]

ID = DB1

Name = TEST

Username = dbuser

Password = "mypass123"

312 Chapter 24. Database monitoring

NetXMS Administrator Guide, Release 5.2.0

24.1.3 Metrics
When loaded, Oracle subagent adds the following metrics to agent (all metrics require database ID as first argument):

Metric Description
Oracle.CriticalStats.AutoArchivingOff(dbid) Archive logs enabled but auto archiving off (YES/NO)
Oracle.CriticalStats.DatafilesNeedMediaRecovery(dbid) Number of datafiles that need media recovery
Oracle.CriticalStats.DFOffCount(dbid) Number of offline datafiles
Oracle.CriticalStats.FailedJobs(dbid) Number of failed jobs
Oracle.CriticalStats.FullSegmentsCount(dbid) Number of segments that cannot extend
Oracle.CriticalStats.RBSegsNotOnlineCount(dbid) Number of rollback segments not online
Oracle.CriticalStats.TSOffCount(dbid) Number of offline tablespaces
Oracle.Cursors.Count(dbid) Current number of opened cursors system-wide
Oracle.DataFile.AvgIoTime(dbid, datafile) Average time spent on single I/O operation for datafile in milliseconds
Oracle.DataFile.Blocks(dbid, datafile) datafile size in blocks
Oracle.DataFile.BlockSize(dbid, datafile) datafile block size
Oracle.DataFile.Bytes(dbid, datafile) datafile size in bytes
Oracle.DataFile.FullName(dbid, datafile) datafile full name
Oracle.DataFile.MaxIoReadTime(dbid, datafile) Maximum time spent on a single read for datafile in milliseconds
Oracle.DataFile.MaxIoWriteTime(dbid, datafile) Maximum time spent on a single write for datafile in milliseconds
Oracle.DataFile.MinIoTime(dbid, datafile) Minimum time spent on a single I/O operation for datafile in milliseconds
Oracle.DataFile.PhysicalReads(dbid, datafile) Total number of physical reads from datafile
Oracle.DataFile.PhysicalWrites(dbid, datafile) Total number of physical writes to datafile
Oracle.DataFile.ReadTime(dbid, datafile) Total read time for datafile in milliseconds
Oracle.DataFile.Status(dbid, datafile) datafile status
Oracle.DataFile.Tablespace(dbid, datafile) datafile tablespace
Oracle.DataFile.WriteTime(dbid, datafile) Total write time for datafile in milliseconds
Oracle.DBInfo.CreateDate(dbid) Database creation date
Oracle.DBInfo.IsReachable(dbid) Database is reachable (YES/NO)
Oracle.DBInfo.LogMode(dbid) Database log mode
Oracle.DBInfo.Name(dbid) Database name
Oracle.DBInfo.OpenMode(dbid) Database open mode
Oracle.DBInfo.Version(dbid) Database version
Oracle.Dual.ExcessRows(dbid) Excessive rows in DUAL table
Oracle.Instance.ArchiverStatus(dbid) Archiver status
Oracle.Instance.Status(dbid) Database instance status
Oracle.Instance.ShutdownPending(dbid) Is shutdown pending (YES/NO)
Oracle.Instance.Version(dbid) DBMS Version
Oracle.Objects.InvalidCount(dbid) Number of invalid objects in DB
Oracle.Performance.CacheHitRatio(dbid) Data buffer cache hit ratio
Oracle.Performance.DictCacheHitRatio(dbid) Dictionary cache hit ratio
Oracle.Performance.DispatcherWorkload(dbid) Dispatcher workload (percentage)
Oracle.Performance.FreeSharedPool(dbid) Free space in shared pool (bytes)
Oracle.Performance.Locks(dbid) Number of locks
Oracle.Performance.LogicalReads(dbid) Number of logical reads
Oracle.Performance.LibCacheHitRatio(dbid) Library cache hit ratio
Oracle.Performance.MemorySortRatio(dbid) PGA memory sort ratio
Oracle.Performance.PhysicalReads(dbid) Number of physical reads
Oracle.Performance.PhysicalWrites(dbid) Number of physical writes
Oracle.Performance.RollbackWaitRatio(dbid) Ratio of waits for requests to rollback segments
Oracle.Sessions.Count(dbid) Number of sessions opened
Oracle.Sessions.CountByProgram(dbid, program) Number of sessions opened by specific program

continues on next page

24.1. Oracle 313

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Metric Description
Oracle.Sessions.CountBySchema(dbid, schema) Number of sessions opened with specific schema
Oracle.Sessions.CountByUser(dbid, user) Number of sessions opened with specific Oracle user
Oracle.TableSpace.BlockSize(dbid, tablespace) tablespace block size
Oracle.TableSpace.DataFiles(dbid, tablespace) Number of datafiles in tablespace
Oracle.TableSpace.FreeBytes(dbid, tablespace) Free bytes in tablespace
Oracle.TableSpace.FreePct(dbid, tablespace) Free space percentage in tablespace
Oracle.TableSpace.Logging(dbid, tablespace) tablespace logging mode
Oracle.TableSpace.Status(dbid, tablespace) tablespace status
Oracle.TableSpace.TotalBytes(dbid, tablespace) Total size in bytes of tablespace
Oracle.TableSpace.Type(dbid, tablespace) tablespace type
Oracle.TableSpace.UsedBytes(dbid, tablespace) Used bytes in tablespace
Oracle.TableSpace.UsedPct(dbid, tablespace) Used space percentage in tablespace

24.1.4 Lists
When loaded, Oracle subagent adds the following lists to agent:

List Description
Oracle.DataFiles(dbid) All known datafiles in database identified by dbid.
Oracle.DataTags(dbid) All data tags for database identified by dbid. Used only for internal diagnostics.
Oracle.TableSpaces(dbid) All known tablespaces in database identified by dbid.

24.1.5 Tables
When loaded, Oracle subagent adds the following tables to agent:

Table Description
Oracle.DataFiles(dbid) Datafiles in database identified by dbid.
Oracle.Sessions(dbid) Open sessions in database identified by dbid.
Oracle.TableSpaces(dbid) Tablespaces in database identified by dbid.

24.2 DB2
NetXMS subagent for DB2 monitoring is designed to provide a way to extract various metrics known as Data Collection
Items (DCI) from an instance or several instances of DB2 database.

24.2.1 Configuration
DB2 subagent configuration is specified in agent configuration file (nxagentd.conf). Configuration can be done in two
ways, the first one would be a simple INI file and the second one would be an XML configuration file. Please note that to
use the XML configuration, you first need to declare the XML file in the DB2 section of the INI configuration file. The
details are below.
Database definition supports the following parameters:

314 Chapter 24. Database monitoring

NetXMS Administrator Guide, Release 5.2.0

Parameter Format Description Default value
DBName string The name of the database to connect to
DBAlias string The alias of the database to connect to
UserName string The name of the user for the database to connect to
Password string The password for the database to connect to. When using

INI format, remember to enclose password in double quotes
(“password”) if it contains # character. This parameter auto-
matically detects and accepts password encrypted with nxenc-
passwd tool.

Encrypted-
Password

string Database user password encrypted with nxencpasswd tool.
DEPRECATED. Use Password instead.

QueryInterval seconds The interval to perform queries with 60
ReconnectIn-
terval

seconds The interval to try to reconnect to the database if the connec-
tion was lost or could not be established

30

Sample DB2 subagent configuration file in INI format:

SubAgent = db2.nsm

[DB2]

DBName = dbname

DBAlias = dbalias

UserName = dbuser

Password = "mypass123"

QueryInterval = 60

ReconnectInterval = 30

XML configuration allows the monitoring of several database instances.
To be able to use the XML configuration file, you first need to specify the file to use in the DB2 section of the INI file.
The syntax is as follows:

SubAgent = db2.nsm

[DB2]

ConfigFile = /myhome/configs/db2.xml

Parameter Format Description Default value
ConfigFile string The path to the XML configuration file

The XML configuration file itself should look like this:

<config>

<db2sub>

<db2 id="1">

<dbname>dbname</dbname>

<dbalias>dbalias</dbalias>

<username>dbuser</username>

<password>mypass123</password>

<queryinterval>60</queryinterval>

(continues on next page)

24.2. DB2 315

NetXMS Administrator Guide, Release 5.2.0

(continued from previous page)
<reconnectinterval>30</reconnectinterval>

</db2>

<db2 id="2">

<dbname>dbname1</dbname>

<dbalias>dbalias1</dbalias>

<username>dbuser1</username>

<password>mypass456</password>

<queryinterval>60</queryinterval>

<reconnectinterval>30</reconnectinterval>

</db2>

</db2sub>

</config>

As you can see, the parameters are the same as the ones from the INI configuration. Each database declaration must
be placed under the db2sub tag and enclosed in the db2 tag. The db2 tag must have a numerical id which has to be a
positive integer greater than 0.

Provided metrics
To get a DCI from the subagent, you need to specify the id from the db2 entry in the XML configuration file (in case of INI
configuration, the id will be 1). To specify the id, you need to add it enclosed in brackets to the name of the metric that is
being requested (e.g., db2.metric.to.request(**1**)). In the example, the metric db2.metric.to.request
from the database with the id 1 will be returned.

Parameter Arguments Return type Description
DB2.Instance.Version(*) Database id DCI_DT_STRINGDBMS version
DB2.Table.Available(*) Database id DCI_DT_INT The number of available tables
DB2.Table.Unavailable(*) Database id DCI_DT_INT The number of unavailable tables
DB2.Table.Data.LogicalSize(*)Database id DCI_DT_INT64Data object logical size in kilobytes
DB2.Table.Data.PhysicalSize(*)Database id DCI_DT_INT64Data object physical size in kilobytes
DB2.Table.Index.LogicalSize(*)Database id DCI_DT_INT64Index object logical size in kilobytes
DB2.Table.Index.PhysicalSize(*)Database id DCI_DT_INT64Index object physical size in kilobytes
DB2.Table.Long.LogicalSize(*)Database id DCI_DT_INT64Long object logical size in kilobytes
DB2.Table.Long.PhysicalSize(*)Database id DCI_DT_INT64Long object physical size in kilobytes
DB2.Table.Lob.LogicalSize(*) Database id DCI_DT_INT64LOB object logical size in kilobytes
DB2.Table.Lob.PhysicalSize(*)Database id DCI_DT_INT64LOB object physical size in kilobytes
DB2.Table.Xml.LogicalSize(*) Database id DCI_DT_INT64XML object logical size in kilobytes
DB2.Table.Xml.PhysicalSize(*)Database id DCI_DT_INT64XML object physical size in kilobytes
DB2.Table.Index.Type1(*) Database id DCI_DT_INT The number of tables using type-1 indexes
DB2.Table.Index.Type2(*) Database id DCI_DT_INT The number of tables using type-2 indexes
DB2.Table.Reorg.Pending(*) Database id DCI_DT_INT The number of tables pending reorganization
DB2.Table.Reorg.Aborted(*) Database id DCI_DT_INT The number of tables in aborted reorganization state
DB2.Table.Reorg.Executing(*) Database id DCI_DT_INT The number of tables in executing reorganization state
DB2.Table.Reorg.Null(*) Database id DCI_DT_INT The number of tables in null reorganization state
DB2.Table.Reorg.Paused(*) Database id DCI_DT_INT The number of tables in paused reorganization state
DB2.Table.Reorg.Alters(*) Database id DCI_DT_INT The number of reorg recommend alter operations
DB2.Table.Load.InProgress(*) Database id DCI_DT_INT The number of tables with load in progress status
DB2.Table.Load.Pending(*) Database id DCI_DT_INT The number of tables with load pending status
DB2.Table.Load.Null(*) Database id DCI_DT_INT The number of tables with load status neither in

progress nor pending
DB2.Table.Readonly(*) Database id DCI_DT_INT The number of tables in Read Access Only state

continues on next page

316 Chapter 24. Database monitoring

NetXMS Administrator Guide, Release 5.2.0

Table 2 – continued from previous page
Parameter Arguments Return type Description
DB2.Table.NoLoadRestart(*) Database id DCI_DT_INT The number of tables in a state that won’t allow a load

restart
DB2.Table.Index.Rebuild(*) Database id DCI_DT_INT The number of tables with indexes that require rebuild
DB2.Table.Rid.Large(*) Database id DCI_DT_INT The number of tables that use large row IDs
DB2.Table.Rid.Usual(*) Database id DCI_DT_INT The number of tables that don’t use large row IDs
DB2.Table.Rid.Pending(*) Database id DCI_DT_INT The number of tables that use large row Ids but not all

indexes have been rebuilt yet
DB2.Table.Slot.Large(*) Database id DCI_DT_INT The number of tables that use large slots
DB2.Table.Slot.Usual(*) Database id DCI_DT_INT The number of tables that don’t use large slots
DB2.Table.Slot.Pending(*) Database id DCI_DT_INT The number of tables that use large slots but there has

not yet been an offline table reorganization or table
truncation operation

DB2.Table.DictSize(* Database id DCI_DT_INT64Size of the dictionary in bytes
DB2.Table.Scans(*) Database id DCI_DT_INT64The number of scans on all tables
DB2.Table.Row.Read(*) Database id DCI_DT_INT64The number of reads on all tables
DB2.Table.Row.Inserted(*) Database id DCI_DT_INT64The number of insertions attempted on all tables
DB2.Table.Row.Updated(*) Database id DCI_DT_INT64The number of updates attempted on all tables
DB2.Table.Row.Deleted(*) Database id DCI_DT_INT64The number of deletes attempted on all tables
DB2.Table.Overflow.Accesses(*)Database id DCI_DT_INT64The number of r/w operations on overflowed rows of

all tables
DB2.Table.Overflow.Creates(*)Database id DCI_DT_INT64The number of overflowed rows created on all tables
DB2.Table.Reorg.Page(*) Database id DCI_DT_INT64The number of page reorganizations executed for all

tables
DB2.Table.Data.LogicalPages(*)Database id DCI_DT_INT64The number of logical pages used on disk by data
DB2.Table.Lob.LogicalPages(*)Database id DCI_DT_INT64The number of logical pages used on disk by LOBs
DB2.Table.Long.LogicalPages(*)Database id DCI_DT_INT64The number of logical pages used on disk by long data
DB2.Table.Index.LogicalPages(*)Database id DCI_DT_INT64The number of logical pages used on disk by indexes
DB2.Table.Xda.LogicalPages(*)Database id DCI_DT_INT64The number of logical pages used on disk by XDA

(XML storage object)
DB2.Table.Row.NoChange(*) Database id DCI_DT_INT64The number of row updates that yielded no changes
DB2.Table.Lock.WaitTime(*) Database id DCI_DT_INT64The total elapsed time spent waiting for locks (ms)
DB2.Table.Lock.WaitTimeGlob(*)Database id DCI_DT_INT64The total elapsed time spent on global lock waits (ms)
DB2.Table.Lock.Waits(*) Database id DCI_DT_INT64The total amount of locks occurred
DB2.Table.Lock.WaitsGlob(*) Database id DCI_DT_INT64The total amount of global locks occurred
DB2.Table.Lock.EscalsGlob(*)Database id DCI_DT_INT64The number of lock escalations on a global lock
DB2.Table.Data.Sharing.Shared(*)Database id DCI_DT_INT The number of fully shared tables
DB2.Table.Data.Sharing.BecomingShared(*)Database id DCI_DT_INT The number of tables being in the process of becom-

ing shared
DB2.Table.Data.Sharing.NotShared(*)Database id DCI_DT_INT The number of tables not being shared
DB2.Table.Data.Sharing.BecomingNotShared(*)Database id DCI_DT_INT The number of tables being in the process of becom-

ing not shared
DB2.Table.Data.Sharing.RemoteLockWaitCount(*)Database id DCI_DT_INT64The number of exits from the NOT_SHARED data

sharing state
DB2.Table.Data.Sharing.RemoteLockWaitTime(*)Database id DCI_DT_INT64The time spent onwaiting for a table to become shared
DB2.Table.DirectWrites(*) Database id DCI_DT_INT64The number of write operations that don’t use the

buffer pool
DB2.Table.DirectWriteReqs(*)Database id DCI_DT_INT64The number of request to perform a direct write op-

eration
DB2.Table.DirectRead(*) Database id DCI_DT_INT64The number of read operations that don’t use the

buffer pool
continues on next page

24.2. DB2 317

NetXMS Administrator Guide, Release 5.2.0

Table 2 – continued from previous page
Parameter Arguments Return type Description
DB2.Table.DirectReadReqs(*) Database id DCI_DT_INT64The number of request to perform a direct read oper-

ation
DB2.Table.Data.LogicalReads(*)Database id DCI_DT_INT64The number of data pages that are logically read from

the buffer pool
DB2.Table.Data.PhysicalReads(*)Database id DCI_DT_INT64The number of data pages that are physically read
DB2.Table.Data.Gbp.LogicalReads(*)Database id DCI_DT_INT64The number of times that a group buffer pool (GBP)

page is requested from the GBP
DB2.Table.Data.Gbp.PhysicalReads(*)Database id DCI_DT_INT64The number of times that a group buffer pool (GBP)

page is read into the local buffer pool (LBP)
DB2.Table.Data.Gbp.InvalidPages(*)Database id DCI_DT_INT64The number of times that a group buffer pool (GBP)

page is requested from the GBP when the version
stored in the local buffer pool (LBP) is invalid

DB2.Table.Data.Lbp.PagesFound(*)Database id DCI_DT_INT64The number of times that a data page is present in the
local buffer pool (LBP)

DB2.Table.Data.Lbp.IndepPagesFound(*)Database id DCI_DT_INT64The number of group buffer pool (GBP) independent
pages found in a local buffer pool (LBP)

DB2.Table.Xda.LogicalReads(*)Database id DCI_DT_INT64The number of data pages for XML storage objects
(XDA) that are logically read from the buffer pool

DB2.Table.Xda.PhysicalReads(*)Database id DCI_DT_INT64The number of data pages for XML storage objects
(XDA) that are physically read

DB2.Table.Xda.Gbp.LogicalReads(*)Database id DCI_DT_INT64The number of times that a data page for an XML
storage object (XDA) is requested from the group
buffer pool (GBP)

DB2.Table.Xda.Gbp.PhysicalReads(*)Database id DCI_DT_INT64The number of times that a group buffer pool (GBP)
dependent data page for an XML storage object
(XDA) is read into the local buffer pool (LBP)

DB2.Table.Xda.Gbp.InvalidPages(*)Database id DCI_DT_INT64The number of times that a page for an XML stor-
age objects (XDA) is requested from the group buffer
pool (GBP) because the version in the local buffer
pool (LBP) is invalid

DB2.Table.Xda.Lbp.PagesFound(*)Database id DCI_DT_INT64The number of times that an XML storage objects
(XDA) page is present in the local buffer pool (LBP)

DB2.Table.Xda.Gbp.IndepPagesFound(*)Database id DCI_DT_INT64The number of group buffer pool (GBP) independent
XML storage object (XDA) pages found in the local
buffer pool (LBP)

DB2.Table.DictNum(*) Database id DCI_DT_INT64The number of page-level compression dictionaries
created or recreated

DB2.Table.StatsRowsModified(*)Database id DCI_DT_INT64The number of rows modified since the last RUN-
STATS

DB2.Table.ColObjectLogicalPages(*)Database id DCI_DT_INT64The number of logical pages used on disk by column-
organized data

DB2.Table.Organization.Rows(*)Database id DCI_DT_INT The number of tables with row-organized data
DB2.Table.Organization.Cols(*)Database id DCI_DT_INT The number of tables with column-organized data
DB2.Table.Col.LogicalReads(*)Database id DCI_DT_INT The number of column-organized pages that are log-

ically read from the buffer pool
DB2.Table.Col.PhysicalReads(*)Database id DCI_DT_INT The number of column-organized pages that are phys-

ically read
DB2.Table.Col.Gbp.LogicalReads(*)Database id DCI_DT_INT The number of times that a group buffer pool (GBP)

dependent column-organized page is requested from
the GBP

continues on next page

318 Chapter 24. Database monitoring

NetXMS Administrator Guide, Release 5.2.0

Table 2 – continued from previous page
Parameter Arguments Return type Description
DB2.Table.Col.Gbp.PhysicalReads(*)Database id DCI_DT_INT The number of times that a group buffer pool (GBP)

dependent column-organized page is read into the lo-
cal buffer pool (LBP) from disk

DB2.Table.Col.Gbp.InvalidPages(*)Database id DCI_DT_INT The number of times that a column-organized page is
requested from the group buffer pool (GBP) when the
page in the local buffer pool (LBP) is invalid

DB2.Table.Col.Lbp.PagesFound(*)Database id DCI_DT_INT The number of times that a column-organized page is
present in the local buffer pool (LBP)

DB2.Table.Col.Gbp.IndepPagesFound(*)Database id DCI_DT_INT The number of group buffer pool (GBP) independent
column-organized pages found in the local buffer pool
(LBP)

DB2.Table.ColsReferenced(*) Database id DCI_DT_INT The number of columns referenced during the execu-
tion of a section for an SQL statement

DB2.Table.SectionExecutions(*)Database id DCI_DT_INT The number of section executions that referenced
columns in tables using a scan

24.3 MongoDB
NetXMS subagent for MongoDBmonitoring. Monitors one or more instances ofMongoDB databases and reports various
database-related metrics.
All metrics available from MongoDB subagent gathered or calculated once per minute thus it’s recommended to set DCI
poll interval for these items to 60 seconds or more. It is supposed that only databases with same version are monitored
by one agent.

24.3.1 Building mongodb subagent
Use --with-mongodb=/path/to/mongoc driver parameter to include MongoDB subagent in build. Was tested
with mongo-c-driver-1.1.0.

24.3.2 Agent Start
While start of subagent at least one database should be up and running. Otherwise subagent will not start. On start
subagent requests serverStatus to get list of possible DCI. This list may vary from version to version of MongoDB.

24.3.3 Configuration file
24.3.4 Metrics
There are 2 types of metrics: serverStatus metrics, that are generated from response on a subagent start and predefined
for database status.
Description of serverStatus metrics can be found there: serverStatus. In this type of DCI should be given id of server
from where the metric should be taken.
Description of database status metrics can be found there: dbStats.

24.3. MongoDB 319

http://docs.mongodb.org/manual/reference/command/serverStatus/
http://docs.mongodb.org/master/reference/command/dbStats/

NetXMS Administrator Guide, Release 5.2.0

Metric Description
Mon-
goDB.collectionsNum(id,databaseName)

Contains a count of the number of collections in that database.

Mon-
goDB.objectsNum(id,databaseName)

Contains a count of the number of objects (i.e. documents) in the database
across all collections.

Mon-
goDB.avgObjSize(id,databaseName)

The average size of each document in bytes.

Mon-
goDB.dataSize(id,databaseName)

The total size in bytes of the data held in this database including the padding
factor.

Mon-
goDB.storageSize(id,databaseName)

The total amount of space in bytes allocated to collections in this database for
document storage.

Mon-
goDB.numExtents(id,databaseName)

Contains a count of the number of extents in the database across all collections.

Mon-
goDB.indexesNum(id,databaseName)

Contains a count of the total number of indexes across all collections in the
database.

Mon-
goDB.indexSize(id,databaseName)

The total size in bytes of all indexes created on this database.

Mon-
goDB.fileSize(id,databaseName)

The total size in bytes of the data files that hold the database.

Mon-
goDB.nsSizeMB(id,databaseName)

The total size of the namespace files (i.e. that end with .ns) for this database.

24.3.5 List

Metric Description
MongoDB.ListDatabases(id) Returns list of databases existing on this server

24.4 Informix
NetXMS subagent for Informix (further referred to as Informix subagent) monitors one or more Informix databases and
reports database-related metrics.
All metrics available from Informix subagent are collected or calculated once per minute, thus its recommended to set
DCI poll interval for these items to 60 seconds or more. All metrics are obtained or derived from the data available in
Informix system catalogs. Informix subagent does not monitor any of the metrics related to lower level database layers,
such as database processes. Monitoring of such metrics can be achieved through the standard NetXMS functionality.

24.4.1 Pre-requisites
A database user must have access rights to Informix system catalog tables.

24.4.2 Configuration
You can specify multiple databases in the [informix] section of agent configuration file. Each database description must
be surrounded by database tags with the id attribute. Id can be any unique integer, it instructs the Informix subagent about
the order in which database sections will be processed.
Each database definition supports the following parameters:

320 Chapter 24. Database monitoring

NetXMS Administrator Guide, Release 5.2.0

Parameter Description
Id Database identifier. It will be used to address this database in parameters.
DBName Database name. This is a name of Informix DSN.
DBServer Name of the Informix server.
DBLogin User name for connecting to database.
DBPassword The password for the database to connect to. When using INI format, remem-

ber to enclose password in double quotes (“password”) if it contains # char-
acter. This parameter automatically detects and accepts password encrypted
with nxencpasswd tool.

Configuration example in INI format:

Subagent=informix.nsm

[informix]

ID=db1

DBName = instance1

DBLogin = user

DBPassword = "password"

Configuration example in XML format:

<config>

<agent>

<subagent>informix.nsm</subagent>

</agent>

<informix>

<databases>

<database id="1">

<id>DB1</id>

<DBName>TEST</DBName>

<DBLogin>NXMONITOR</DBLogin>

<DBPassword>NXMONITOR</DBPassword>

</database>

<database id="2">

<id>DB2</id>

<DBName>PROD</DBName>

<DBLogin>NETXMS</DBLogin>

<DBPassword>PASSWORD</DBPassword>

</database>

</databases>

</informix>

</config>

Provided metrics
To get a metric from the subagent, you need to specify the id from the informix entry in configuration file. To specify the
id, you need to add it enclosed in brackets to the name of the metric that is being requested (e.g., informix.metric.
to.request(**1**)). In the example, the metric informix.metric.to.request from the database with the id 1
will be returned.

24.4. Informix 321

NetXMS Administrator Guide, Release 5.2.0

Metric Arguments Return type Description
Informix.Session.Count(*) Database id DCI_DT_INT Number of sessions opened
In-
formix.Database.Owner(*)

Database id DCI_DT_STRINGThe database creation date

In-
formix.Database.Logged(*)

Database id DCI_DT_INT Returns 1 if the database is logged, 0 - otherwise

In-
formix.Dbspace.Pages.PageSize(*)

Database id DCI_DT_INT A size of a dbspace page in bytes

In-
formix.Dbspace.Pages.PageSize(*)

Database id DCI_DT_INT A number of pages used in the dbspace

In-
formix.Dbspace.Pages.Free(*)

Database id DCI_DT_INT A number of free pages in the dbspace

In-
formix.Dbspace.Pages.FreePerc(*)

Database id DCI_DT_INT Percentage of free space in the dbspace

24.5 MySQL
NetXMS subagent for MySQL monitoring. Monitors one or more instances of MySQL databases and reports various
database-related metrics.
MySQL subagent requires MySQL driver to be available in the system.

24.5.1 Configuration
Configuration of MySQL subagent is done in agent configuration file (nxagentd.conf). One or multiple MySQL server
instances can be specified. In case of single database definition simply set all required parameters under [mysql] section.
In multi database configuration define each database under mysql/databases/<name> section with unique <name>
for each database. If no id provided <name> of the section will be used as a database id.
Each database definition supports the following parameters:

Parame-
ter

Description Default value

Id Database identifier. It will be used to address this
database in parameters.

localdb - for single DB definition; last part of sec-
tion name - for multi database definition

Database Database name. This is a name of MySQL DSN. information_schema
Server Name or IP of the MySQL server. 127.0.0.1
Connec-
tionTTL

Time in seconds. When this time gets elapsed, con-
nection to the DB is closed and reopened again.

3600

Login User name for connecting to database. netxms
Password Database user password. When using INI format,

remember to enclose password in double quotes
(“password”) if it contains # character. This pa-
rameter automatically detects and accepts pass-
word encrypted with nxencpasswd tool.

Single database configuration example:

Subagent=mysql.nsm

(continues on next page)

322 Chapter 24. Database monitoring

NetXMS Administrator Guide, Release 5.2.0

(continued from previous page)
[mysql]

Id=db1

Database = instance1

Login = user

Password = password

Multi database configuration example:

Subagent=mysql.nsm

[mysql/databases/somedatabase]

Database = instance1

Login = user

Password = password

Server = netxms.demo

[mysql/databases/local]

Database = information_schema

Login = user

Password = encPassword

Server = 127.0.0.1

24.5.2 Provided metrics

Metric Description
MySQL.Connections.Aborted(id) aborted connections
MySQL.Connections.BytesReceived(id)bytes received from all clients
MySQL.Connections.BytesSent(id) bytes sent to all clients
MySQL.Connections.Current(id) number of active connections
MySQL.Connections.CurrentPerc(id) connection pool usage (%)
MySQL.Connections.Failed(id) failed connection attempts
MySQL.Connections.Limit(id) maximum possible number of simultaneous connections
MySQL.Connections.Max(id) maximum number of simultaneous connections
MySQL.Connections.MaxPerc(id) maximum connection pool usage (%)
MySQL.Connections.Total(id) cumulative connection count
MySQL.InnoDB.BufferPool.Dirty(id) InnoDB used buffer pool space in dirty pages
MySQL.InnoDB.BufferPool.DirtyPerc(id)InnoDB used buffer pool space in dirty pages (%)
MySQL.InnoDB.BufferPool.Free(id) InnoDB free buffer pool space
MySQL.InnoDB.BufferPool.FreePerc(id)InnoDB free buffer pool space (%)
MySQL.InnoDB.BufferPool.Size(id) InnoDB buffer pool size
MySQL.InnoDB.BufferPool.Used(id) InnoDB used buffer pool space
MySQL.InnoDB.BufferPool.UsedPerc(id)InnoDB used buffer pool space (%)
MySQL.InnoDB.DiskReads(id) InnoDB disk reads
MySQL.InnoDB.ReadCacheHitRatio(id)InnoDB read cache hit ratio (%)
MySQL.InnoDB.ReadRequest(id) InnoDB read requests
MySQL.InnoDB.WriteRequest(id) InnoDB write requests
MySQL.IsReachable(id) is database reachable
MySQL.MyISAM.KeyCacheFree(id) MyISAM key cache free space
MySQL.MyISAM.KeyCacheFreePerc(id)MyISAM key cache free space (%)

continues on next page

24.5. MySQL 323

NetXMS Administrator Guide, Release 5.2.0

Table 3 – continued from previous page
Metric Description
MySQL.MyISAM.KeyCacheReadHitRatio(id)MyISAM key cache read hit ratio (%)
MySQL.MyISAM.KeyCacheSize(id) MyISAM key cache size
MySQL.MyISAM.KeyCacheUsed(id) MyISAM key cache used space
MySQL.MyISAM.KeyCacheUsedPerc(id)MyISAM key cache used space (%)
MySQL.MyISAM.KeyCacheWriteHitRatio(id)MyISAM key cache write hit ratio (%)
MySQL.MyISAM.KeyDiskReads(id) MyISAM key cache disk reads
MySQL.MyISAM.KeyDiskWrites(id) MyISAM key cache disk writes
MySQL.MyISAM.KeyReadRequests(id)MyISAM key cache read requests
MySQL.MyISAM.KeyWriteRequests(id)MyISAM key cache write requests
MySQL.OpenFiles.Current(id) open files
MySQL.OpenFiles.CurrentPerc(id) open file pool usage (%)
MySQL.OpenFiles.Limit(id) maximum possible number of open files
MySQL.Queries.Cache.HitRatio(id) query cache hit ratio (%)
MySQL.Queries.Cache.Hits(id) query cache hits
MySQL.Queries.Cache.Size(id) query cache size
MySQL.Queries.ClientsTotal(id) number of queries executed by clients
MySQL.Queries.Delete(id) number of DELETE queries
MySQL.Queries.DeleteMultiTable(id) number of multitable DELETE queries
MySQL.Queries.Insert(id) number of INSERT queries
MySQL.Queries.Select(id) number of SELECT queries
MySQL.Queries.Slow(id) slow queries
MySQL.Queries.SlowPerc(id) slow queries (%)
MySQL.Queries.Total(id) number of queries
MySQL.Queries.Update(id) number of UPDATE queries
MySQL.Queries.UpdateMultiTable(id) number of multitable UPDATE queries
MySQL.Server.Uptime(id) server uptime
MySQL.Sort.MergePasses(id) sort merge passes
MySQL.Sort.MergeRatio(id) sort merge ratio (%)
MySQL.Sort.Range(id) number of sorts using ranges
MySQL.Sort.Scan(id) number of sorts using table scans
MySQL.Tables.Fragmented(id) fragmented tables
MySQL.Tables.Open(id) open tables
MySQL.Tables.OpenLimit(id) maximum possible number of open tables
MySQL.Tables.OpenPerc(id) table open cache usage (%)
MySQL.Tables.Opened(id) tables that have been opened
MySQL.TempTables.Created(id) temporary tables created
MySQL.TempTables.CreatedOnDisk(id)temporary tables created on disk
MySQL.TempTables.CreatedOnDiskPerc(id)temporary tables created on disk (%)
MySQL.Threads.CacheHitRatio(id) thread cache hit ratio (%)
MySQL.Threads.CacheSize(id) thread cache size
MySQL.Threads.Created(id) threads created
MySQL.Threads.Running(id) threads running

24.6 PostgreSQL
NetXMS subagent for PostgreSQLmonitoring. Monitors one or more instances of PostgeSQL servers and reports various
database-related metrics.
PostgreSQL subagent requires PostgreSQL driver to be available in the system.

324 Chapter 24. Database monitoring

NetXMS Administrator Guide, Release 5.2.0

24.6.1 Pre-requisites
A PostgreSQL user with CONNECT right to at least one database on the server.
If thePostgreSQL.DatabaseSizemetric should bemonitored the usermust have theCONNECT right to other databases
on the server too.
Starting from the PostgreSQL version 10, the user must have the the role pg_monitor assigned. Required role can be
assigned to user with the following query:

GRANT pg_monitor TO user;

Where user is the user configured in PostgreSQL subagent for database access.

24.6.2 Configuration
Configuration of PostgreSQL subagent is done in agent configuration file (nxagentd.conf). One or multiple PostgreSQL
server instances can be specified. In case of single server definition simply set all required parameters under [pgsql]
section. In multi server configuration define each server instance under pgsql/servers/<name> section with unique
<name> for each server. If no id provided <name> of the section will be used as a server id.
It is not necessary to configure connections to more than one database on the same PostgreSQL server instance.
Each server definition supports the following parameters:

Parame-
ter

Description Default value

Id Server identifier. It will be used to address this
server connection in parameters.

localdb - for single server definition
last part of section name - for multi server defini-
tion

Database Maintenance database name. This is a name of the
database on the server the subagent is connected to.

postgres

Server Name or IP of the PostgreSQL server.
If the sever uses differnt than default port (5432)
the :port must be added to the server name or IP.

127.0.0.1

Connec-
tionTTL

Time in seconds. When this time gets elapsed, con-
nection to the DB is closed and reopened again.

3600

Login User name for connecting to database. netxms
Password Database user password.

When using INI format, remember to enclose pass-
word in double quotes (“password”) if it contains #
character.
This parameter automatically detects and accepts
password encrypted with nxencpasswd tool.

Single server configuration example:

Subagent=pgsql.nsm

[pgsql]

Id=production

Server = 10.0.3.5

Database = database1

Login = user

Password = password

24.6. PostgreSQL 325

NetXMS Administrator Guide, Release 5.2.0

Multi server configuration example:

Subagent=pgsql.nsm

[pgsql/servers/production]

Server = 10.0.3.5

Database = database1

Login = user

Password = password

[pgsql/servers/testing]

Server = 10.0.3.6

Database = test_database

Login = user

Password = password

24.6.3 Provided Metrics
When loaded, PostgreSQL subagent adds two types of metrics to the agent.
Database server metrics are common for all databases on the server. These metrics require one argument which is server
id from the configuration.
Database metrics are independent for each database on the server. These metrics require two arguments. The first one is
server id from the configuration the second one is name of the database. If the second argument is missing the name of
the maintenance database from the configuration is used.
Alternatively, these two arguments can be specified as one argument in following format: datanase_name@server_id.
This format is returned by the PostgreSQL.AllDatabases list.
Following table shows the database server metrics:

Metric Type Description
PostgreSQL.IsReachable(id) String Is database server instance reachable
PostgreSQL.Version(id) String Database server version
Post-
greSQL.Archiver.ArchivedCount(id)

Integer 64-
bit

Number of WAL files that have been successfully archived

Post-
greSQL.Archiver.FailedCount(id)

Integer 64-
bit

Number of failed attempts for archiving WAL files

Post-
greSQL.Archiver.IsArchiving(id)

String Is archiving running

Post-
greSQL.Archiver.LastArchivedAge(id)

Integer Age of the last successful archive operation

Post-
greSQL.Archiver.LastArchivedWAL(id)

String Name of the last WAL file successfully archived

Post-
greSQL.Archiver.LastFailedAge(id)

Integer Age of the last failed archival operation

Post-
greSQL.Archiver.LastFailedWAL(id)

String Name of the WAL file of the last failed archival operation

Post-
greSQL.BGWriter.BuffersAlloc(id)

Integer 64-
bit

Cumulative number of buffers allocated

Post-
greSQL.BGWriter.BuffersBackend(id)

Integer 64-
bit

Cumulative number of buffers written directly by a backend

continues on next page

326 Chapter 24. Database monitoring

NetXMS Administrator Guide, Release 5.2.0

Table 4 – continued from previous page
Metric Type Description
Post-
greSQL.BGWriter.BuffersBackendFsync(id)

Integer 64-
bit

Cumulative number of times a backend had to execute its own fsync
call

Post-
greSQL.BGWriter.BuffersClean(id)

Integer 64-
bit

Cumulative number of buffers written by the background writer

Post-
greSQL.BGWriter.BuffersCheckpoint(id)

Integer 64-
bit

Cumulative number of buffers written during checkpoints

Post-
greSQL.BGWriter.CheckpointsReq(id)

Integer 64-
bit

Cumulative number of requested checkpoints that have been per-
formed

Post-
greSQL.BGWriter.CheckpointsTimed(id)

Integer 64-
bit

Cumulative number of scheduled checkpoints that have been per-
formed

Post-
greSQL.BGWriter.CheckpointSyncTime(id)

Float Total amount of time that has been spent in the portion of checkpoint
processing where files are synchronized to disk, in milliseconds

Post-
greSQL.BGWriter.CheckpointWriteTime(id)

Float Total amount of time that has been spent in the portion of checkpoint
processing where files are written to disk, in milliseconds

Post-
greSQL.BGWriter.MaxWrittenClean(id)

Integer 64-
bit

Cumulative number of times the background writer stopped a clean-
ing scan because it had written too many buffers

Post-
greSQL.GlobalConnections.AutovacuumMax(id)

Integer Maximal number of autovacuum backends

Post-
greSQL.GlobalConnections.Total(id)

Integer Total number of connections

Post-
greSQL.GlobalConnections.TotalMax(id)

Integer Maximal number of connections

Post-
greSQL.GlobalConnections.TotalPct(id)

Integer Used connections (%)

Post-
greSQL.Replication.InRecovery(id)

String Is recovery in progress (from version 9.6.0)

Post-
greSQL.Replication.IsReceiver(id)

String Is the server WAL receiver

Post-
greSQL.Replication.Lag(id)

Integer Replication lag in seconds (from version 10.0)

Post-
greSQL.Replication.LagBytes(id)

Float Replication lag in bytes (from version 10.0)

Post-
greSQL.Replication.WALSenders(id)

Integer 64-
bit

Number of WAL senders

Post-
greSQL.Replication.WALFiles(id)

Integer 64-
bit

Number of the WAL files (from version 10.0)

Post-
greSQL.Replication.WALSize(id)

Float Size of the WAL files (from version 10.0)

Following table shows the database metrics:

Metric Type Description
Post-
greSQL.DBConnections.Active(id*[,
*database])

Integer Number of backends for this database executing a query

Post-
greSQL.DBConnections.Autovacuum(id*[,
*database])

Integer Number of autovacuum backends for this database

continues on next page

24.6. PostgreSQL 327

NetXMS Administrator Guide, Release 5.2.0

Table 5 – continued from previous page
Metric Type Description
Post-
greSQL.DBConnections.FastpathFunctionCall(id*[,
*database])

Integer Number of backends for this database executing a fast-path function

Post-
greSQL.DBConnections.Idle(id*[,
*database])

Integer Number of backends for this database waiting for a new client com-
mand

Post-
greSQL.DBConnections.IdleInTransaction(id*[,
*database])

Integer Number of backends for this database in a transaction, but is not
currently executing a query

Post-
greSQL.DBConnections.IdleInTransactionAborted(id*[,
*database])

Integer Number of backends for this database in a transaction, but is not cur-
rently executing a query and one of the statements in the transaction
caused an error

Post-
greSQL.DBConnections.OldestXID(id*[,
*database])

Integer Age of the oldest XID

Post-
greSQL.DBConnections.Total(id*[,
*database])

Integer Total number of backends for connections to this database

Post-
greSQL.DBConnections.Waiting(id*[,
*database])

Integer Number of waiting backends for this database

Post-
greSQL.Locks.AccessExclusive(id*[,
*database])

Integer 64-
bit

Number of AccessExclusive locks for this database

Post-
greSQL.Locks.AccessShare(id*[,
*database])

Integer 64-
bit

Number of AccessShare locks for this database

Post-
greSQL.Locks.Exclusive(id*[,
*database])

Integer 64-
bit

Number of Exclusive locks for this database

Post-
greSQL.Locks.RowExclusive(id*[,
*database])

Integer 64-
bit

Number of RowExclusive locks for this database

Post-
greSQL.Locks.RowShare(id*[,
*database])

Integer 64-
bit

Number of RowShare locks for this database

PostgreSQL.Locks.Share(id*[,
*database])

Integer 64-
bit

Number of Share locks for this database

Post-
greSQL.Locks.ShareRowExclusive(id*[,
*database])

Integer 64-
bit

Number of ShareRowExclusive locks for this database

Post-
greSQL.Locks.ShareUpdateExclusive(id*[,
*database])

Integer 64-
bit

Number of ShareUpdateExclusive locks for this database

PostgreSQL.Locks.Total(id*[,
*database])

Integer 64-
bit

Total number of locks for this database

Post-
greSQL.Stats.BlkWriteTime(id*[,
*database])

Float Cumulative time spent writing data file blocks by backends in this
database, in milliseconds

continues on next page

328 Chapter 24. Database monitoring

NetXMS Administrator Guide, Release 5.2.0

Table 5 – continued from previous page
Metric Type Description
Post-
greSQL.Stats.BlockReadTime(id*[,
*database])

Float Cumulative time spent reading data file blocks by backends in this
database, in milliseconds

Post-
greSQL.Stats.BlocksRead(id*[,
*database])

Integer 64-
bit

Cumulative number of disk blocks read in this database

Post-
greSQL.Stats.BloksHit(id*[,
*database])

Integer 64-
bit

Cumulative number of times disk blocks were found already in the
buffer cache

Post-
greSQL.Stats.CacheHitRatio(id*[,
*database])

Float Query cache hit ratio (%)

Post-
greSQL.Stats.Conflicts(id*[,
*database])

Integer 64-
bit

Cumulative number of queries canceled due to conflicts with recov-
ery in this database (stanby servers only)

Post-
greSQL.Stats.DatabaseSize(id*[,
*database])

Integer 64-
bit

Disk space used by the database

Post-
greSQL.Stats.Deadlocks(id*[,
*database])

Integer 64-
bit

Cumulative number of deadlocks detected in this database

Post-
greSQL.Stats.ChecksumFailures(id*[,
*database])

Integer 64-
bit

Cumulative number of data page checksum failures detected in this
database (from version 12.0)

Post-
greSQL.Stats.NumBackends(id*[,
*database])

Integer Number of backends currently connected to this database

Post-
greSQL.Stats.RowsDeleted(id*[,
*database])

Integer 64-
bit

Cumulative number of rows deleted by queries in this database

Post-
greSQL.Stats.RowsFetched(id*[,
*database])

Integer 64-
bit

Cumulative number of rows fetched by queries in this database

Post-
greSQL.Stats.RowsInserted(id*[,
*database])

Integer 64-
bit

Cumulative number of rows inserted by queries in this database

Post-
greSQL.Stats.RowsReturned(id*[,
*database])

Integer 64-
bit

Cumulative number of rows returned by queries in this database

Post-
greSQL.Stats.RowsUpdated(id*[,
*database])

Integer 64-
bit

Cumulative number of rows updated by queries in this database

Post-
greSQL.Stats.TempBytes(id*[,
*database])

Integer 64-
bit

Total amount of data written to temporary files by queries in this
database

Post-
greSQL.Stats.TempFiles(id*[,
*database])

Integer 64-
bit

Cumulative number of temporary files created by queries in this
database

continues on next page

24.6. PostgreSQL 329

NetXMS Administrator Guide, Release 5.2.0

Table 5 – continued from previous page
Metric Type Description
Post-
greSQL.Stats.TransactionCommits(id*[,
*database])

Integer 64-
bit

Cumulative number of transactions in this database that have been
committed

Post-
greSQL.Stats.TransactionRollbacks(id*[,
*database])

Integer 64-
bit

Cumulative number of transactions in this database that have been
rolled back

Post-
greSQL.Transactions.Prepared(id*[,
*database])

Integer 64-
bit

Number of prepared transactions for this database

24.6.4 Lists
When loaded, PostgreSQL subagent adds the following lists to agent:

List Description
PostgreSQL.DBServers All configured servers (server ids).
PostgreSQL.Databases(id) All databases on server identified by id.
PostgreSQL.AllDatabases All databases on configured servers. The format of the list items is

datanase_name@server_id.
PostgreSQL.DataTags(id) All data tags for server identified by id. Used only for internal diagnostics.

24.6.5 Tables
When loaded, PostgreSQL subagent adds the following tables to agent:

Table Description
PostgreSQL.Backends(id) Connection backends on server identified by id.
PostgreSQL.Locks(id) Locks on server identified by id.
Post-
greSQL.PreparedTransactions(id)

Prepared transactions on server identified by id.

330 Chapter 24. Database monitoring

CHAPTER

TWENTYFIVE

APPLICATION MONITORING

25.1 Process monitoring
Platform subagents support process monitoring. Process metrics have “Process.*” format. Metrics differ between different
OS. Detailed description of each metric can be found in List of supported metrics.

25.2 Application Database Monitoring
For application database monitoring you can use database monitoring subagents or database query subagents. Informa-
tion about database monitoring subagents can be found in Database monitoring. This chapter discusses only DBQuery
subagents configuration and usage.
DBQuery subagent has 2 types of query execution: background - that periodically executes SQL query and provides result
and error code as metrics and synchronous, when query is executed by request. Background query, however, can be also
executed per request. Synchronously executed query can have parameters that are supplied along with requested metric.
SQL queries are specified in the agent configuration or a full query can be supplied via DB.Query() metric.
For time consuming SQL requests it is highly recommended to use background execution. Heavy SQL can cause request
timeout for synchronous execution.

25.2.1 Configuration file
General configuration parameters related to DBQuery subagent are set in [DBQUERY] section of agent’s configuration
file. The following parameters are supported:

331

NetXMS Administrator Guide, Release 5.2.0

Parameter Format Description
AllowEmptyResultSet yes or no If set to yes (default), agent returns empty metric value if

database returns empty result. If set to no, agents returns
error in case if query returns empty result.

Database Semicolon-separated option
list

Database connection information. Deprecated,
specify database connection parameters in [DB-
QUERY/Databases/id] sections

Query name:dbid:interval:query Define query scheduled for background execution. Can be
specified multiple times to define multiple queries. Fields
in query definition have the following meaning:

• name - Query name which will be used in metrics to
retrieve collected data.

• dbid - Database connection ID
• interval - Polling interval in seconds.
• query - SQL query to be executed.

ConfigurableQuery name:dbid:description:query Define query for synchronous execution. Can be specified
multiple times to define multiple queries. Fields in query
definition have the following meaning:

• name - Query name which will be used in metrics to
retrieve collected data.

• dbid - Database connection ID
• description - Description that will be shown in agents
parameter description.

• query - SQL query to be executed. Bind variables
are supported, question mark (?) placeholders in the
query will be substituted with parameters supplied
along with requested metric.

Database connection parameters are set in separate sections named [DBQUERY/Databases/id] where id is database
connection id used to identify this connection in configuration parameters and agent metrics. The following parameters
are supported:

332 Chapter 25. Application monitoring

NetXMS Administrator Guide, Release 5.2.0

Name Status Description
name optional Database name
DBDriverOptions optional Additional driver-specific parameters
driver mandatory Database driver name. Available drivers are:

• db2
• informix
• mssql
• mysql
• odbc
• oracle
• pgsql
• sqlite

encryptedPassword optional Database password in encrypted form (use nxencpasswd command line
tool to encrypt passwords). This option takes precedence over pass-
word option

login optional Login name
password optional Database password. Remember to enclose password in double quotes

(“password”) if it contains # character. This parameter automatically
detects and accepts password encrypted with nxencpasswd tool.

server optional Database server name or IP address.

25.2.2 Configuration Example
MasterServers = netxms.demo

SubAgent = dbquery.nsm

[DBQUERY]

Query1 will be executed every 60 seconds (be can be also executed on-demand via␣

↪→metric "query1"):

Query = query1:db1:60:SELECT f1 FROM table1

Query2 will be executed on demand, one parameter should be supplied along with the␣

↪→metric

ConfigurableQuery = query2:db1:This query requires one parameter:SELECT f1 FROM␣

↪→table2 WHERE f2 LIKE ?

[DBQUERY/Databases/db1]

driver=pgsql

server=10.0.0.4

login=netxms

password=netxms1

name=test_db

25.2. Application Database Monitoring 333

NetXMS Administrator Guide, Release 5.2.0

25.2.3 Metrics
When loaded, DBQuery subagent adds the following metrics to agent:

Metric Description
DB.Query(dbid,query) Result of immediate execution of the query query in database identified by

dbid. Database with given name must be defined in configuration file.
DB.QueryExecutionTime(name) Last execution duration in milliseconds of the query name. Query with given

name must be defined in configuration file.
Added in version 4.4.3.

DB.QueryResult(name) Last result of execution of the query name. Query with given name must be
defined in configuration file.

DB.QueryStatus(name) Status of last execution of the query name. Query with given name must be
defined in configuration file. Value returned is native SQL error code.

DB.QueryStatusText(name) Status of last execution of the query name as a text. Query with given name
must be defined in configuration file.

queryName Result of immediate execution of query queryName defined in agent config
file with Query=....

queryName(param1, param2…) Result of immediate execution of query queryName defined in agent config file
with ConfigurableQuery=.... Optional parameters param1, param2…
will be used as bind variables in the query.

25.2.4 Tables
When loaded, DBQuery subagent adds the following tables to agent:

Table Description
DB.Query(dbid,query) Result of immediate execution of the query query in database identified by

dbid. Database with given name must be defined in configuration file
DB.QueryResult(name) Last result of execution of the query name. Query with given name must be

defined in configuration file
queryName Result of immediate execution of query queryName defined in agent config

file with Query=....
queryName(param1, param2…) Result of immediate execution of query queryName defined in agent config file

with ConfigurableQuery=.... Optional parameters param1, param2…
will be used as bind variables in the query.

25.3 Log monitoring
Application logs can be added to monitoring. For log monitoring configuration refer to Log monitoring chapter.

25.4 External Metrics
It is possible to define External metrics that will get metric data from the script that is executed on the agent. This
option can be used to get status from some command line tools or from self made scripts. Information about options and
configuration is available in Agent External Metrics chapter.

334 Chapter 25. Application monitoring

CHAPTER

TWENTYSIX

ICMP PING

The following options exist to monitor systems using ICMP pings:
• ICMP response statistic collection
• Metrics provided by ping subagent

26.1 ICMP response statistic collection
NetXMS can periodically perform ICMP polls and calculate node availability statistics. This functionality can be con-
trolled globally via the server configuration parameter ICMP.CollectPollStatistics or locally on each node. The
ICMP polling interval and statistic calculation period (expressed in number of polls), timeout and ICMP packet size are
configured via server configuration parameters. See for more details Server configuration parameters.
ICMP requests are sent to the primary IP address of the node. Additional targets can be specified in the node properties.
It is also possible to set interfaces of the node as targets by enabling Collect ICMP response statistic for this interface in the
properties of the interface. Please note that enabling this for the interface that corresponds to the primary IP address will
lead to pinging this address twice.
ICMP polling is performed either from the server, from a zone proxy if zoning is used, or from a specific proxy when this
is configured in the node properties. The proxying agent should have the ping.nsm subagent enabled.
The results of the ICMP response statistic collection for primary IP address are visible in Object Details -> Overview and
are available as internal metrics:

• ICMP.ResponseTime.Average
• ICMP.PacketLoss
• ICMP.ResponseTime.Last
• ICMP.ResponseTime.Max
• ICMP.ResponseTime.Min

The results of the ICMP response statistic collection for additional targets and interfaces are available as internal metrics:
• ICMP.ResponseTime.Average(*)
• ICMP.PacketLoss(*)
• ICMP.ResponseTime.Last(*)
• ICMP.ResponseTime.Max(*)
• ICMP.ResponseTime.Min(*)

For example, the ICMP.PacketLoss(8.8.8.8) internal metric will provide packet loss for the target with IP address
8.8.8.8.

335

NetXMS Administrator Guide, Release 5.2.0

No historical data is stored by default. It is necessary to configure DCIs using the above mentioned internal metric to
store historical data.

26.2 Ping subagent
This subagent can be used to measure ICMP ping response times from one location to another. When loaded, the PING
subagent adds a number of metrics to the agent. Measurements can be either requested by the server or scheduled by the
agent itself.

26.2.1 Metrics requested by the server

Metric Description
Icmp.Ping(target, timeout, psize, dont-
fragmentflag, retrycount)

ICMP ping response time from target. Agent will send echo request as
soon as it receives request for the value of the metric, and will return the
response time for that particular request.
Arguments:

• target should be an IP address or hostname.
• timeout specifies timeout in milliseconds. This is an optional argu-
ment. If omitted, the value from the Timeout configuration param-
eter will be used.

• psize specifies the packet size in bytes including the IP header. This
is an optional argument. If omitted, the value from theDefaultPack-
etSize configuration parameter will be used.

• dontfragmentflag defines if the don’t fragment flag is set in ICMP
requests. This is an optional argument. If omitted, the value from the
DefaultDoNotFragmentFlag configuration parameter will be used.

• retrycount defines the number of retries. This is an optional argu-
ment. If omitted, a default value of 1 is used.

Please note that while metrics scheduled by the agent just return the result
of the background ping process, this metric waits for actual ping comple-
tion and then returns the result. Because of this behavior, it is not rec-
ommended to use the Icmp.Ping metric for regular monitoring but in-
stead only for occasional tests. For instant monitoring, you should con-
figure targets for background ping and use the Icmp.AvgPingTime or
Icmp.LastPingTime metrics to retrieve results.

26.2.2 Metrics scheduled by the agent
There is a number of metrics that are collected based on the background ping process scheduled by the agent (based on
the “PacketRate” parameter).
Targets for these metrics can be either defined in the agent configuration file (using one or more “Target” parameters),
or registered automatically on first request from server. If targets are registered automatically, the default packet size is
used. The first request to a non-existing target will return “0” as a value. Automatically registered targets are automatically
removed after a timeout, when the server stops requesting metrics for that target.

336 Chapter 26. ICMP ping

NetXMS Administrator Guide, Release 5.2.0

Single-value metrics

Metric Description
Icmp.AvgPingTime(target) Average ICMP ping response time from target for the last minute. The

argument target can be either an IP address or a name specified in the Target
configuration record (see below).

ICMP.MovingAvgPingTime(target) Moving average of response time from target. Time period for moving
average calculation is set by the MovingAverageTimePeriod agent configu-
ration parameter (see below).

Icmp.LastPingTime(target) Last ICMP ping response time from target.
ICMP.MaxPingTime(target) Maximum ICMP ping response time from target for the last minute.
ICMP.MinPingTime(target) Minimum ICMP ping response time from target for the last minute.
ICMP.CumulativeMaxPingTime(target) Maximum encountered ICMP ping response time from target since that

target was added.
ICMP.CumulativeMinPingTime(target) Minimum encountered ICMP ping response time from target since that

target was added.
Icmp.PacketLoss(target) ICMP ping packet loss (in percents) for target for the last minute.
Icmp.PingStdDev(target) Standard deviation of the response time for the target for last minute.
ICMP.Jitter(target) Jitter of ICMP ping response time from target for last minute.
ICMP.MovingAvgJitter(target) Moving average of response time jitter from target. Time period for mov-

ing average calculation is set by MovingAverageTimePeriod agent configu-
ration parameter (see below).

Tables

Table Description
Icmp.Targets Table of configured ping targets. Columns:

• IP address
• Last response time (milliseconds)
• Average response time (milliseconds)
• Minimal response time (milliseconds)
• Maximum response time (milliseconds)
• Moving average response time (milliseconds)
• Standard deviation of response time (milliseconds)
• Jitter of response time (milliseconds)
• Moving average jitter of response time (milliseconds)
• Cumulative minimal response time (milliseconds)
• Cumulative maximum response time (milliseconds)
• Packet loss (percents)
• Configured packet size
• Name
• DNS name
• Automatic

Lists

List Description
Icmp.Targets List of configured ping target names

26.2. Ping subagent 337

http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Jitter

NetXMS Administrator Guide, Release 5.2.0

26.2.3 Configuration file
All configuration parameters related to the PING subagent should be placed into [PING] section of the configuration file
of the agent. The following configuration parameters are supported:

Parameter Format Description Default
value

AutoConfigureTargets boolean Allow automatic registration of ICMP targets when
the metrics for a new target are requested from the
server.

yes

DefaultDoNotFragmentFlag boolean Default value for the Don’t Fragment flag in ICMP
requests.

no

DefaultPacketSize bytes Set default packet size to bytes. 46
MaxTargetInactivityTime seconds Timeout to remove an automatically registered

ICMP target if the server stops requesting metrics
for that target.

86400

MovingAverageTimePeriod seconds Set time period used for the moving average value
calculation.

3600

PacketRate packets Set ping packet rate per minute. Allowed values are
between 1 and 60 and values below or above will be
adjusted automatically.

4

Target ip:name:psize Add target with IP address ip to the background
ping target list and assign an optional name name to
it. The target will be pinged using packets of psize
bytes. The name and packet size fields are optional
and can be omitted. This parameter can be given
multiple times to add multiple targets.

none

ThreadPoolMaxSize threads Maximal number of threads in the thread pool of
the agent that is serving scheduled ICMP measure-
ments.

1024

ThreadPoolMinSize threads Minimal number of threads in the thread pool of
the agent that is serving scheduled ICMP measure-
ments.

1

Timeout milliseconds Set response timeout to milliseconds. Allowed val-
ues are between 500 and 5000 and values below or
above will be adjusted automatically.

3000

Configuration example:

This sample nxagentd.conf instructs agent to:

1. load the PING subagent

2. Ping target 10.0.0.1 with default size (46 bytes) packets and 10.0.0.2 with␣

↪→1000 bytes packets

3. Timeout for ping set to 1 second and pings are sent 12 times per minute (each␣

↪→5 seconds)

MasterServers = netxms.demo

SubAgent = ping.nsm

[PING]

Timeout = 1000

PacketRate = 12 # every 5 seconds

(continues on next page)

338 Chapter 26. ICMP ping

NetXMS Administrator Guide, Release 5.2.0

(continued from previous page)
Target = 10.0.0.1:target_1

Target = 10.0.0.2:target_2:1000

Note

Response time of 10000 indicates timeout

26.2. Ping subagent 339

NetXMS Administrator Guide, Release 5.2.0

340 Chapter 26. ICMP ping

CHAPTER

TWENTYSEVEN

HARDWARE(SENSOR) MONITORING

NetXMS has subagents that allow to monitor hardware sensors.
• lm-sensors - Can collect data from all sensors that are supported by lm-sensors drivers on Linux.
• DS18x20 - This subagent collects temperature data from ds18x20 sensors. Linux only.
• RPI - This subagent is created for Raspberry Pi. It can collect data from DHT22 sensor and get the status of
any GPIO pin.

27.1 lm-sensors
This subagent can be used to read hardware status using the lm_sensors package.

27.1.1 Pre-requisites
The package lm_sensors should be installed and configured properly. The output of the sensors command should produce
meaningful output (see example below).

alk@b08s02ur:~$ sensors

w83627dhg-isa-0290

Adapter: ISA adapter

Vcore: +1.14 V (min = +0.00 V, max = +1.74 V)

in1: +1.61 V (min = +0.05 V, max = +0.01 V) ALARM

AVCC: +3.31 V (min = +2.98 V, max = +3.63 V)

VCC: +3.31 V (min = +2.98 V, max = +3.63 V)

in4: +1.79 V (min = +1.29 V, max = +0.05 V) ALARM

in5: +1.26 V (min = +0.05 V, max = +1.67 V)

in6: +0.10 V (min = +0.26 V, max = +0.08 V) ALARM

3VSB: +3.30 V (min = +2.98 V, max = +3.63 V)

Vbat: +3.18 V (min = +2.70 V, max = +3.30 V)

fan1: 3308 RPM (min = 1188 RPM, div = 8)

fan2: 6250 RPM (min = 84375 RPM, div = 8) ALARM

fan3: 0 RPM (min = 5273 RPM, div = 128) ALARM

fan4: 0 RPM (min = 10546 RPM, div = 128) ALARM

fan5: 0 RPM (min = 10546 RPM, div = 128) ALARM

temp1: +39.0°C (high = +4.0°C, hyst = +1.0°C) ALARM sensor = diode

temp2: +17.0°C (high = +80.0°C, hyst = +75.0°C) sensor = diode

temp3: +124.5°C (high = +80.0°C, hyst = +75.0°C) ALARM sensor = thermistor

cpu0_vid: +2.050 V

coretemp-isa-0000

(continues on next page)

341

http://www.lm-sensors.org/wiki/Devices
http://www.lm-sensors.org/wiki/man/sensors

NetXMS Administrator Guide, Release 5.2.0

(continued from previous page)
Adapter: ISA adapter

Core 0: +37.0°C (high = +76.0°C, crit = +100.0°C)

coretemp-isa-0001

Adapter: ISA adapter

Core 1: +37.0°C (high = +76.0°C, crit = +100.0°C)

27.1.2 Parameters
When loaded, the lm_sensors subagent adds the following metrics:

Metric Description
LMSensors.Value(chip, label) Current value returned by hardware sensor

27.1.3 Configuration file
All configuration parameters related to lthe m_sensors subagent should be placed into the *LMSENSORS section of
agent’s configuration file. The following configuration parameters are supported:

Parame-
ter

For-
mat

Description Default value

Use-
Fahrenheit

Boolean If set to “yes”, all temperature reading will be con-
verted to Fahrenheit

no

ConfigFile String Path to sensors.conf none, use system default (usually
/etc/sensors3.conf)

27.1.4 Configuration example
MasterServers = netxms.demo

SubAgent = lmsensors.nsm

[LMSENSORS]

UseFahrenheit = yes

ConfigFile = /etc/sensors.netxms.conf

27.1.5 Sample usage
(based on output of “sensors” from Pre-requisites section)

alk@b08s02ur:~$ nxget netxms.demo 'LMSensors.Value(coretemp-isa-0001,Core 1)'

38.000000

alk@b08s02ur:~$ nxget netxms.demo 'LMSensors.Value(w83627dhg-isa-0290,AVCC)'

3.312000

342 Chapter 27. Hardware(sensor) monitoring

http://www.lm-sensors.org/wiki/man/sensors.conf

NetXMS Administrator Guide, Release 5.2.0

27.2 DS18x20
This subagent collects temperature from DS18x20 sensor. Subagent available for Linux only. To use this subagent the
1-Wire driver should be installed.

27.2.1 Metrics

Metric Type Meaning
Sen-
sor.Temperature(*)

Float Sensor temperature

27.2.2 Configuration file
All configuration parameters related to the lm_sensors subagent should be placed into the *DS18X20 section of the
configuration file of the agent. The following configuration parameters are supported:

Pa-
rame-
ter

Format Description

Sensor String Sensor identification in format sensorName:uniqueID

27.2.3 Configuration example
MasterServers = netxms.demo

SubAgent = DS18X20.nsm

[DS18X20]

Sensor = sensorName:uiniqueID123456788990

27.3 RPI
This subagent collects data from the Raspberry Pi DHT22 sensor as well as the status of GPIO pins.

27.3.1 Metrics

Metric Type Meaning
GPIO.PinState(pinNumber) Integer State of pin with given number. This pin number should be enabled in

the agent configuration file.
Sensors.Humidity Integer Sensors data for humidity
Sensors.Temperature Integer Sensors data for temperature

27.3.2 Configuration file
All configuration parameters related to the lm_sensors subagent should be placed into the *RPI section of the configura-
tion file of the agent. The following configuration parameters are supported:

27.2. DS18x20 343

NetXMS Administrator Guide, Release 5.2.0

Pa-
rame-
ter

Format Description

Dis-
ableDHT22

Boolean Disables dht22 sensor if yes. By default no.

En-
abled-
Pins

Comma separated
list of numbers

List of pins that are enabled for status check.

27.3.3 Configuration example
MasterServers = netxms.demo

SubAgent = rpi.nsm

[RPI]

DisableDHT22 = no

EnabledPins = 1,4,5,8

27.4 MQTT
This is a subagent that can be used to collect data from devices and sensors that use theMQTT protocol for communication.
The subagent can be used to connect to existing MQTT brokers, listen to user specified topics, map posted data to metrics
and generate events.
There are two ways how to set up data collection for MQTT.
One approach is to specify an MQTT topic - agent metric mapping in agent configuration file. In this case DCIs are
created with origin NetXMS Agent.
The other approach is to use the MQTT origin in DCI properties. The metric has the following format bro-
ker_name:mqtt_topic, where broker_name is name specified in the agent configuration file. The Agent which performs
MQTT data collection is selected automatically. If the node is in a zone, the zone proxy is used. If a MQTT proxy is
specified in the node properties, that will be used. With this approach there is no need to specify metrics in the agent
configuration file - when the server requests mqtt topic for the first time, the agent subscribes to that topic.

27.4.1 Configuration file
These are configuration sections and parameters for the MQTT subagent:

Section Parameters Format Description
[MQTT/Brokers/broker_name] Hostname,

Port, Login,
Password

String This section holds the data needed to
connect to the MQTT broker

[MQTT/Brokers/broker_name/Events] EVENT_NAME String This section is optional and allows to
specify event that would be generated
when MQTT topic gets new value

[MQTT/Brokers/broker_name/Metrics] Metric.

Name

Dot separated
string

This section is optional and setsmapping
of data posted to MQTT topics to agent
metrics

344 Chapter 27. Hardware(sensor) monitoring

NetXMS Administrator Guide, Release 5.2.0

27.4.2 Configuration example
SubAgent = mqtt.nsm

[MQTT/Brokers/Local]

Hostname = 10.10.10.3

27.4.3 Configuration example with metric and event configuration
SubAgent = mqtt.nsm

[MQTT/Brokers/Office]

Hostname = mqtt.office.radensolutions.com

[MQTT/Brokers/Office/Events]

MQTT_METERHUB_RAW_DATA = "cmnd/5C:CF:7F:25:79:D6/#"

[MQTT/Brokers/Office/Metrics]

MeterHub.Telemetry.RSSI = "tele/5C:CF:7F:25:79:D6/RSSI"

MeterHub.Telemetry.Time = "tele/5C:CF:7F:25:79:D6/TIME"

This configuration will connect to an MQTT broker Office at the Hostname. Whenever data is published to the topic
cmnd/5C:CF:7F:25:79:D6/#, the event MQTT_METERHUB_RAW_DATA will be triggered. It will also provide two
metrics, MeterHub.Telemetry.RSSI and MeterHub.Telemetry.Timewhich will report data received on the topics
tele/5C:CF:7F:25:79:D6/RSSI and tele/5C:CF:7F:25:79:D6/TIME respectively.

27.4. MQTT 345

NetXMS Administrator Guide, Release 5.2.0

346 Chapter 27. Hardware(sensor) monitoring

CHAPTER

TWENTYEIGHT

UPS MONITORING

There are two options to monitor a UPS: the first is through a USB or serial connection with help of a subagent and the
second one is through the network with help of SNMP.
A subagent can be used for monitoring a UPS (Uninterruptible Power Supply) attached to a serial or USB port on a
computer where the NetXMS agent is running. USB-attached devices are currently only supported on the Windows
platform. Serial devices are supported on all platforms. One subagent can monitor multiple attached devices.

28.1 USB or serial UPS monitoring
You can monitor UPS devices attached to the hosts via serial cable or USB via the UPS subagent. Once you have your
UPS attached to the host and the NetXMS agent installed, you should configure the UPS subagent. First, add the following
line to the agents configuration file main section:

SubAgent = ups.nsm

Second, configure the attached UPS devices. Create a UPS section and for each UPS device attached to the host add a
line in the following format:

Device = id:port:protocol

id is an arbitrary but unique number in the range 0 to 127, which is used to distinguish multiple UPS devices in further
requests.
device is either the name of the serial port (e.g. COM1: or /dev/ttyS0) or the serial number of the USB device. The
keyword ANY can be used instead of an exact serial number to select the first available port.
protocol specifies which communication protocol should be used. Supported protocols are:

• APC
• BCMXCP - Some of the HP/Compaq, PowerWare, etc.
• MEGATEC
• METASYS
• MICRODOWELL
• USB - HID UPS devices (currently Windows only)

A sample configuration section for two devices attached via serial ports where one is an APC device (configured as device
0) and one is a HP device (configured as device 1):

347

NetXMS Administrator Guide, Release 5.2.0

UPS subagent configuration section

[UPS]

Device = 0:/dev/ttyS0:APC

Device = 1:/dev/ttyS1:BCMXCP

Once the UPS subagent is configured, you can start monitoring the UPS device status via metrics provided by it:

Metric Name Type Meaning
UPS.BatteryLevel(*) Integer Battery charge level in percents.
UPS.BatteryVoltage(*)Float Current battery voltage.
UPS.ConnectionStatus(*Integer

Connection status between agent and device. Can have the following values:
• 0 - Agent is communication with the device
• 1 - Communication with the device has been lost

UPS.EstimatedRuntime(*)Integer Estimated on-battery runtime in minutes.
UPS.Firmware(*) String Device’s firmware version.
UPS.InputVoltage(*)Float Input line voltage.
UPS.LineFrequency(*)Integer Input line frequency in Hz.
UPS.Load(*) Integer Device load in percents.
UPS.MfgDate(*) String Device manufacturing date.
UPS.Model(*) String Device model name.
UPS.NominalBatteryVoltage(*)Float Nominal battery voltage.
UPS.OnlineStatus(*) Integer

Device online status. Can have the following values:
• 0 - Device is online.
• 1 - Device is on battery power.
• 2 - Device is on battery power and battery level is low.

UPS.OutputVoltage(*)Float Output line voltage.
UPS.SerialNumber(*)String Device’s serial number.
UPS.Temperature(*)Integer Internal device temperature.

Please note that not all metrics are supported by all UPS devices. Many old or simplemodels will support only basicmetrics
like UPS.OnlineStatus. The most typical approach is to monitor UPS.OnlineStatus for going to 1 or 2, and then send
notifications to administrators and shutdown affected hosts if needed. You can also monitor the UPS.EstimatedRuntime
metric for the same purpose, if your device supports it.

28.2 SNMP UPS monitoring
Another option is to monitor the UPS using SNMP. NetXMS already includes MIBs for some UPSs, like APC UPS and
the standard UPS MIB. The description for possible OIDs and some additional information for APC UPS configuration
can be found on a NetXMS wiki.
Please check Import MIB for MIB loading and DCI configuration for metric collection.

348 Chapter 28. UPS monitoring

https://wiki.netxms.org/wiki/UPS_Monitoring_(APC)_via_SNMP

CHAPTER

TWENTYNINE

CLUSTER MONITORING

29.1 Introduction
Cluster monitoring provides aspects of monitoring needed in high availability setups. There is a special class of object in
NetXMS - Cluster.
DCIs defined on a cluster object are automatically applied to its nodes. A cluster allows to aggregate data from its nodes,
e.g. to calculate sum or average for a metric that is collected from all nodes. A cluster can adequately collect data from
services as they move from one node to another, providing uninterrupted data collection.

349

NetXMS Administrator Guide, Release 5.2.0

350 Chapter 29. Cluster monitoring

CHAPTER

THIRTY

JVM MONITORING

NetXMS has a Java plugin that allows to monitor the JVM. This subagent is build using JMX functionality.

30.1 Metrics
30.1.1 Single-value Metrics

Metric Type Meaning
JMX.ObjectAttribute(name,object,attribute,[item]) String Get attribute of any connection,

object. Optional attribute item is
used when attribute is a list.

JMX.Memory.ObjectsPendingFinalization(name) Unsigned integer JVM objects pending finalization
JMX.Memory.Heap.Committed(name) Unsigned integer 64 JVM committed heap memory
JMX.Memory.Heap.Current(name) Unsigned integer 64 JVM current heap size
JMX.Memory.Heap.Init(name) Unsigned integer 64 JVM initial heap size
JMX.Memory.Heap.Max(name) Unsigned integer 64 JVM maximum heap size
JMX.Memory.NonHeap.Committed(name) Unsigned integer 64 JVM committed non-heap mem-

ory
JMX.Memory.NonHeap.Current(name) Unsigned integer 64 JVM current non-heap memory

size
JMX.Memory.NonHeap.Init(name) Unsigned integer 64 JVM initial non-heap memory

size
JMX.Memory.NonHeap.Max(name) Unsigned integer 64 JVM maximum non-heap mem-

ory size
JMX.Threads.Count(name) Unsigned integer JVM live threads count
JMX.Threads.DaemonCount(name) Unsigned integer JVM daemon threads count
JMX.Threads.PeakCount(name) Unsigned integer JVM peak number of threads
JMX.Threads.TotalStarted(name) Unsigned integer JVM total threads started
JMX.VM.BootClassPath(name) String JVM boot class path
JMX.VM.ClassPath(name) String JVM class path
JMX.VM.LoadedClassCount(name) Unsigned integer JVM loaded class count
JMX.VM.Name(name) String JVM name
JMX.VM.SpecVersion(name) String JVM specification version
JMX.VM.TotalLoadedClassCount(name) Unsigned integer JVM total loaded class count
JMX.VM.UnloadedClassCount(name) Unsigned integer JVM unloaded class count
JMX.VM.Uptime(name) Unsigned integer JVM uptime
JMX.VM.Vendor(name) String JVM vendor
JMX.VM.Version(name) String JVM version

351

NetXMS Administrator Guide, Release 5.2.0

30.1.2 Lists

Metric Meaning
JMX.Domains(name) List of JVM domains
JMX.Objects(name) List of JVM objects
JMX.ObjectAttributes(name)List of JVM object’s attributes

30.2 Configuration
It is required to define the java subagent and its configuration before JMXplugin configuration. More information about the
Java subagent and its configuration can be found in the Java subagent section. JMS has only one configuration parameter
“Server”. It is used to define the JMX server connection string.
JMS server connection string declaration options:

• name:url
• name:login@url
• name:login/password@url

30.2.1 Configuration example
In this example there are 2 JMS connections defined: name and serverName2.

MasterServers = netxms.demo

SubAgent=java.nsm

[JAVA]

jvm = /usr/lib/jvm/java-8-oracle/jre/lib/amd64/server/libjvm.so

Plugin = jmx.jar

[JMX]

Server=name:login/password@localhost

Server=serverName2:admin/pwd123@server1

352 Chapter 30. JVM monitoring

CHAPTER

THIRTYONE

HYPERVISOR MONITORING

NetXMS has subagents that allow to monitor hypervisors. This subagent is build using libvirt functionality. Due to the
fact that libvirt is poorly supported on Windows platforms, vmgr subagent is not provided on Windows.
When installing NetXMS from packages, vmgr subagent is provided as a separate package named netxms-agent-vmgr. If
building from source, ./configure should be ran with –with-vmgr.

31.1 Configuration
Configuration is separated into two parts: vmgr section defines all monitored hosts, and each host configuration is defined
in separate section for each host.
Each host configuration should contain connection URL. Login and password parameters are optional. URL creation
rules for each vitalization solution type can be found in libvirt documentation.
Not all api functions are supported by all hypervisors in libvirt. See libvirt API support matrix for more information.

31.1.1 Configuration example
In this example two hosts are defined: localESX1 and test. localESX1 connection details are described in section
vmgr:localESX1 and test connection details are described in section vmgr:test.

MasterServers = netxms.demo

SubAgent = vmgr.nsm

[vmgr]

host = localESX1

host = test

[vmgr:localESX1]

Url = esx://root@10.5.0.21/?no_verify=1

Login = root

Password = password

[vmgr:test]

Url = test:///default

353

http://libvirt.org/drivers.html
https://libvirt.org/hvsupport.html

NetXMS Administrator Guide, Release 5.2.0

31.2 Provided Metrics
31.2.1 Single-value Metrics

Metric Type Description
VMGR.Host.CPU.Arch(hostName) String Host CPU architecture
VMGR.Host.CPU.MaxCount(hostName) Unsigned integer Host maximum virtual CPU

count
VMGR.Host.FreeMemory(hostName) Unsigned integer 64 Host free memory
VMGR.Host.MemorySize(hostName) Unsigned integer 64 Host memory size
VMGR.Host.CPU.Model(hostName) String Host CPU model name
VMGR.Host.CPU.Frequency(hostName) Unsigned integer Host CPU frequency
VMGR.Host.ConnectionType(hostName) String Connection type
VMGR.Host.LibraryVersion(hostName) Unsigned integer 64 Library version
VMGR.Host.ConnectionVersion(hostName) Unsigned integer 64 Connection version
VMGR.VM.Memory.Used(hostName,vmName) Unsigned integer 64 Memory currently used by VM
VMGR.VM.Memory.UsedPrec(hostName,vmName) Unsigned integer Percentage of currently memory

usage by VM
VMGR.VM.Memory.Max(hostName,vmName) Unsigned integer 64 MaximumVMavailablememory
VMGR.VM.CPU.Time(hostName,vmName) Unsigned integer 64 Maximum VM CPU time

31.2.2 Tables

Metric Description
VMGR.VM(hostName) Connection VM table
VMGR.InterfaceList(hostName) Connection interface list
VMGR.VMDisks(hostName,vmName) VM Disks
VMGR.VMController(hostName,vmName) VM Controllers
VMGR.VMInterface(hostName,vmName) VM Interfaces
VMGR.VMVideo(hostName,vmName) VM Video adapter settings
VMGR.Networks(hostName) Networks table
VMGR.Storages(hostName) Storages table

31.2.3 Lists

Metric Description
VMGR.VMHost List of hosts
VMGR.VMList(hostName) List of VM for the host

354 Chapter 31. Hypervisor monitoring

CHAPTER

THIRTYTWO

ASTERISK MONITORING

NetXMS can be used to monitor health and performance of Asterisk PBX. All monitoring data collected and provided
by subagent asterisk.nsm. One agent can collect data from multiple Asterisk systems.

32.1 Configuration
All Asterisk systems should be defined in subagent configuration. For simplified setup for single system monitoring sub-
agent supports “local” system. Configuration for local system can be defined inAsterisk section of agent configuration file.
For each additional system new section should be created in configuration file named Asterisk/Systems/SystemName
(SystemName should be replaced with unique name). Each section can have the following parameters:

Parameter Description Default
value

Hostname DNS name or IP address of Asterisk PBX 127.0.0.1
Login Login name root
Password Password empty
Port TCP port number for AMI connection 5038

It is also possible to configure subagent to periodically perform SIP registration tests. Each test should be config-
ured in separate configuration section named Asterisk/SIPRegistrationTests/TestName for local system and Aster-
isk/Systems/SystemName/SIPRegistrationTests/TestName for other systems. SystemName and TestName should be
replaced with unique system and test names respectively. Each test configuration section can have the following parame-
ters:

Parameter Description Default
value

Domain Domain name used for registration empty
Interval Check interval in seconds 300
Login SIP login name netxms
Password SIP password netxms
Proxy SIP proxy sip:Asterisk

IP address

32.1.1 Configuration Examples
Local system without SIP tests:

355

NetXMS Administrator Guide, Release 5.2.0

MasterServers = netxms.demo

SubAgent = asterisk.nsm

[Asterisk]

Login = root

Password = password1

Local system with two SIP tests:

MasterServers = netxms.demo

SubAgent = asterisk.nsm

[Asterisk]

Login = root

Password = password1

[Asterisk/SIPRegistrationTests/104]

Login = 104

Password = 12345

Domain = demo.netxms

[Asterisk/SIPRegistrationTests/115]

Login = 115

Password = 12345

Domain = demo.netxms

Interval = 60

Local system and remote system (named Remote1) on address 10.0.0.1 with one SIP test each:

MasterServers = netxms.demo

SubAgent = asterisk.nsm

[Asterisk]

Login = root

Password = password1

[Asterisk/SIPRegistrationTests/104]

Login = 104

Password = 12345

Domain = demo.netxms

[Asterisk/Systems/Remote1]

Hostname = 10.0.0.1

Login = root

Password = password1

[Asterisk/Systems/Remote1/SIPRegistrationTests/120]

Login = 120

Password = 12345

Domain = remote.netxms

356 Chapter 32. Asterisk monitoring

NetXMS Administrator Guide, Release 5.2.0

32.2 Metrics
32.2.1 Single-value metrics
All metrics accept system name as first argument. Name for default local system is LOCAL. If system name is omitted
local system is assumed. If system name is the only argument braces can be omitted as well.

Metric Type Meaning
Asterisk.AMI.Status(system) Integer AMI connection status (1 if AMI session is

ready, 0 if not)
Asterisk.AMI.Version(system) Integer AMI version
Asterisk.Channels.Active(system) Integer Number of active channels
Asterisk.Channels.Busy(system) Integer Number of busy channels
Asterisk.Channels.Dialing(system) Integer Number of dialing channels
Asterisk.Channels.OffHook(system) Integer Number of off-hook channels
Asterisk.Channels.Reserved(system) Integer Number of reserved channels
Asterisk.Channels.Ringing(system) Integer Number of ringing channels
Asterisk.Channels.Up(system) Integer Number of up channels
Asterisk.Channels.CurrentCalls(system) Integer Number of currently active calls
Asterisk.Events.CallBarred(system) Integer Global cumulative counter of “call barred”

events
Asterisk.Events.CallRejected(system) Integer Global cumulative counter of “call rejected”

events
Asterisk.Events.ChannelUnavailable(system) Integer Global cumulative counter of “channel un-

available” events
Asterisk.Events.Congestion(system) Integer Global cumulative counter of “congestion”

events
Asterisk.Events.NoRoute(system) Integer Global cumulative counter of “no route”

events
Asterisk.Events.SubscriberAbsent(system) Integer Global cumulative counter of “subscriber ab-

sent” events
Asterisk.Peer.Events.CallBarred(system, peer) Integer Cumulative counter of “call barred” events

for given peer
Asterisk.Peer.Events.CallRejected(system, peer) Integer Cumulative counter of “call rejected” events

for given peer
Asterisk.Peer.Events.ChannelUnavailable(system, peer) Integer Cumulative counter of “channel unavailable”

events for given peer
Asterisk.Peer.Events.Congestion(system, peer) Integer Cumulative counter of “congestion” events

for given peer
Asterisk.Peer.Events.NoRoute(system, peer) Integer Cumulative counter of “no route” events for

given peer
Asterisk.Peer.Events.SubscriberAbsent(system, peer) Integer Cumulative counter of “subscriber absent”

events for given peer
Asterisk.Peer.RTCP.AverageJitter(system, peer) Integer Average jitter for given peer in milliseconds

(moving average over last 180measurements)
Asterisk.Peer.RTCP.AveragePacketLoss(system, peer) Integer Average packet loss for given peer (moving

average over last 180 measurements)
Asterisk.Peer.RTCP.AverageRTT(system, peer) Integer Average round trip time in milliseconds for

given peer (moving average over last 180
measurements)

Asterisk.Peer.RTCP.LastJitter(system, peer) Integer Last reported jitter for given peer in millisec-
onds

continues on next page

32.2. Metrics 357

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Metric Type Meaning
Asterisk.Peer.RTCP.LastPacketLoss(system, peer) Integer Last reported packet loss for given peer
Asterisk.Peer.RTCP.LastRTT(system, peer) Integer Last reported round trip time in milliseconds

for given peer
Asterisk.Peer.RTCP.MaxJitter(system, peer) Integer Maximum reported jitter for given peer in

milliseconds
Asterisk.Peer.RTCP.MaxPacketLoss(system, peer) Integer Maximum reported packet loss for given peer
Asterisk.Peer.RTCP.MaxRTT(system, peer) Integer Maximum reported round trip time in mil-

liseconds for given peer
Asterisk.Peer.RTCP.MinJitter(system, peer) Integer Minimum reported jitter for given peer in

milliseconds
Asterisk.Peer.RTCP.MinPacketLoss(system, peer) Integer Minimum reported packet loss for given peer
Asterisk.Peer.RTCP.MinRTT(system, peer) Integer Minimum reported round trip time in mil-

liseconds for given peer
Asterisk.SIP.Peer.Details(system, peer, tag) String Value of specific tag from SIPshowpeer AMI

message
Asterisk.SIP.Peer.IPAddress(system, peer) String SIP peer IP address
Asterisk.SIP.Peer.Status(system, peer) String SIP peer status
Asterisk.SIP.Peer.Type(system, peer) String SIP peer type
Asterisk.SIP.Peer.UserAgent(system, peer) String SIP peer user agent information
Asterisk.SIP.Peer.VoiceMailbox(system, peer) String SIP peer voice mailbox information
Asterisk.SIP.Peers.Connected(system) Integer Number of connected SIP peers
Asterisk.SIP.Peers.Total(system) Integer Total count of configured SIP peers
Asterisk.SIP.Peers.Unknown(system) Integer Number of SIP peers in unknown state
Asterisk.SIP.Peers.Unmonitored(system) Integer Number of unmonitored SIP peers
Asterisk.SIP.Peers.Unreachable(system) Integer Number of unreachable SIP peers
Asterisk.SIP.RegistrationTest.ElapsedTime(system, test) Integer Elapsed time for last run of given registration

test
Asterisk.SIP.RegistrationTest.Status(system, test) Integer Status of last run of given registration test
Asterisk.SIP.RegistrationTest.Timestamp(system, test) Integer Timestamp last run of given registration test

as UNIX time (number of seconds since
1.1.1970 00:00:00 UTC)

Asterisk.SIP.TestRegistration(system, login, password,
domain)

Integer Status of ad-hoc registration

Asterisk.TaskProcessor.HighWatermark(system, proces-
sor)

Integer High watermark for given task processor

Asterisk.TaskProcessor.LowWatermark(system, proces-
sor)

Integer Low watermark for given task processor

Asterisk.TaskProcessor.MaxDepth(system, processor) Integer Maximum queue depth for given task proces-
sor

Asterisk.TaskProcessor.Processed(system, processor) Integer Number of processed tasks for given task pro-
cessor

Asterisk.TaskProcessor.Queued(system, processor) Integer Number of queued tasks for given task pro-
cessor

Asterisk.Version(system) String Asterisk version

358 Chapter 32. Asterisk monitoring

NetXMS Administrator Guide, Release 5.2.0

32.2.2 Tables
All tables accept system name as first argument. Name for default local system is LOCAL. If system name is omitted
local system is assumed. If system name is the only argument braces can be omitted as well.

Metric Description
Asterisk.Channels(system) Active channels
Asterisk.CommandOutput(system, command) Output of given Asterisk console command
Asterisk.SIP.Peers(system) SIP peers
Asterisk.SIP.RegistrationTests(system) Configured SIP registration tests
Asterisk.TaskProcessors(system) Task processors

32.2.3 Lists
All lists accept system name as first argument. Name for default local system is LOCAL. If system name is omitted local
system is assumed. If system name is the only argument braces can be omitted as well.

Metric Description
Asterisk.Channels(system) Active channels
Asterisk.CommandOutput(system, command) Output of given Asterisk console command
Asterisk.SIP.Peers(system) SIP peers
Asterisk.SIP.RegistrationTests(system) Configured SIP registration tests
Asterisk.Systems Configured Asterisk systems
Asterisk.TaskProcessors(system) Task processors

32.2. Metrics 359

NetXMS Administrator Guide, Release 5.2.0

360 Chapter 32. Asterisk monitoring

CHAPTER

THIRTYTHREE

NETWORK TOPOLOGY

33.1 Introduction
NetXMS server automatically creates and maintains network model on different layers. All necessary information taken
from ARP cache, routing tables, and switch forwarding database of managed nodes. Topology data provided by CDP,
LLDP, and NDP (SONMP) protocols also used in building network model. Having network model instantly available
allows NetXMS users to perform various network topology tasks much faster and easier.
Requirements to build network topology:

• All network equipment should be registered in NetXMS system
• Equipment should response to SNMP
• Equipment should have at least STP
• There will be more information if equipment will have LLDP or CDP

Manual topology poll can be started on the network equipment to heave information about information availability.
Based on network topology network correlation is done. Network correlation reduce number of alerts and increase prob-
lem resolution speed.
Currently there are 3 states/events regarding connectivity:

• down (event SYS_NODE_DOWN) - when server cannot contact the node and has no topology information for
event correlation or it is really problem with that node

• unreachable (SYS_NODE_UNREACHABLE) - when server knows that node cannot be contacted due to inter-
mediate router/interface failure

• up (SYS_NODE_UP) - when node is reachable
So when node becomes unreachable, either SYS_NODE_DOWN or SYS_NODE_UNREACHABLE event is generated,
depending on root cause. But when node became reachable again, SYS_NODE_UP being generated.

33.2 How topology information is built
FDB. From FDB table we take ports where only one mac address is present - this means that something is directly
connected. If this device is present in NetXMS and it’s mac address is known (we have agent on it, SNMP, or some other
agent on that network communicated to that device and has IP-MAC pair in ARP table) - we have a peer.
LLDP. So if we have another switch connected, that switch is sending LLDP packets, the switch that we are polling
receives these packets and saves information in LLDP table. We read this table and we know that there’s a device with
some LLDP ID connected to port X of our device. But we also need NetXMS to read that device via SNMP, in this case
LLDP ID will be read and we will be able to match.
CDP. Similar to LLDP.

361

NetXMS Administrator Guide, Release 5.2.0

STP table on a switch has limited information - only about peers that are on the way to root LLDP switch. But we read
that and can get peers from there.
Interfaces tab has Peer Discovery Protocol` column which tells, how peer information was obtained.
For debug you can set debug tags poll.topology, topo.*, topology.* to level 7 - there will be some information in server
log when topology poll is executed.

33.3 Find where node is connected
It is possible to find switch port where any given node is connected (sometimes called “connection point” in management
client). To find out node’s connection point, right-click on node object, and select Find switch port in pop-up menu.
Message box with search results will pop up, and if port is found, search results view will be opened (or updated if already
open). Search results view looks like this:

Columns have the following meaning:

Seq. Search result sequence number
Node Name of end node object
Interface Name of node’s interface object
MAC Interface’s MAC address
IP Interface’s IP address
Switch Name of switch node object
Port Name of interface object representing switch port
Type Connection type - direct or indirect. Direct connection type means that NetXMS server

did not detect any other devices on same switch port, and most likely end node con-
nected directly to the switch. Indirect means that some other devices was detected on
same switch port. Virtual machines and virtual machine host will always be detected as
indirect.

362 Chapter 33. Network topology

NetXMS Administrator Guide, Release 5.2.0

33.4 Find MAC address
It is possible to find location of any known MAC address in the network. To do this, select Tools ‣ Find MAC address.
Results of a search will be displayed in the same results view. It is not necessary that node with given MAC address be
managed by NetXMS server, but if it is, appropriate details will be displayed.

33.5 Find IP address
It is possible to find location of any known IP address in the network. To do this, select Tools ‣ Find IP address. Results
of a search will be displayed in the same results view. It is not necessary that node with given IP address be managed by
NetXMS server, but if it is, appropriate details will be displayed.

33.4. Find MAC address 363

NetXMS Administrator Guide, Release 5.2.0

364 Chapter 33. Network topology

CHAPTER

THIRTYFOUR

HARDWARE ASSET MANAGEMENT

Added in version 4.4.
NetXMS can store information about hardware assets organized as a hierarchical structure. Asset information is kept in
Asset objects under Assets tree. There are Asset group objects which acts as folders.
Assets information attributes are defined globally in Asset management schema.
Assets can be linked to Nodes, Access Points, Chassis, Mobile Devices, Racks or Sensors in one-to-one relationship.
Linking can be done either manually or automatically, based on serial number information or MAC address of primary
network interface (MAC address is used only if serial number is not available).
When asset is linked to Node (or other type of object), Vendor, Model and IP Address fields in the asset can be au-
tomatically updated based on information on a Node. Asset fields can also be automatically filled in using Auto Fill
Script.

34.1 Configuring Asset management schema
Configuration of information attributes which are present in assets is performed in Configuration -> Asset management
schema. The schema is global.

365

NetXMS Administrator Guide, Release 5.2.0

To add a new attribute, select New attribute… from context menu or click + button on the toolbar. This will open asset
attribute property editor:

Asset attribute properties has the following settings:
• Name - Should be unique and conform to NXSL naming convention. This name is used when accessing asset
information from scripts.

• Display name - Optional, Name will be used if not filled in.
• Data type - The following data types are supported:

– String - Maximum length 2000 characters
– Integer - Int32
– Number - Double
– Boolean
– Enum - Possible values are configured on Enum Values tab.
– MAC Address
– IP Address
– UUID
– Object Reference
– Date

• System type - enables special processing depending on the selected type:
– Serial - used for automatic linking. Asset will be automatically linked to node if value of this attribute matches
serial number of that node.

366 Chapter 34. Hardware Asset Management

NetXMS Administrator Guide, Release 5.2.0

– MACAddress - used for automatic linking. Asset will be automatically linked to node, if value of this attribute
matches MAC Address on primary interface of that node (but only if node does not has Serial number)

– IP address - used to autofill. This attribute will be automatically created and filled with primary IP address
of node (or other object) linked to this asset.

– Vendor - used to autofill. This attribute will be automatically created and filled with vendor value of node
linked to this asset. Autofill is performed only once, once this attribute has a value, it will not be updated.

– Model - used to autofill. This attribute will be automatically created and filled with model value of node
linked to this asset. Autofill is performed only once, once this attribute has a value, it will not be updated.

Processing is performed on node’s (or other object’s) configuration poll or when asset is linked.
• Use limits - enables limits for attribute value. For String type minimum and maximum number of characters can
be defined. For numeric types minimum and maximum value is defined.

• Mandatory - this attribute is mandatory.
• Unique - values for this attribute should be unique among all assets.
• Hidden - attribute is hidden from summary table displayed on asset groups.
• Auto Fill Script - NXSL script that performs auto-fill of asset property. Ignored, if System type is set.
• Enum Values - defines list of possible values for Enum data type. Display name is optional, if it’s not filled in,
Value is used.

34.2 Asset Creation
Assets are managed under Assets perspective. Hierarchical structure is built using Asset Group objects, Asset Root is the
top object of the hierarchy.
To create a new Asset Group, select Create->Asset Group from context menu of Asset Root or Asset Group and provide
asset group name.
To create a new Asset, select Create->Asset from context menu of Asset Root or Asset Group. Asset creation dialog will
be displayed, with asset attributes configured in asset management schema:

34.2. Asset Creation 367

NetXMS Administrator Guide, Release 5.2.0

Name and mandatory attributes should be filled in, the rest of attributes can be left empty.

34.3 Asset Linking
To link asset to node (or other type of object), select Link to… from context menu of asset and choose a node. If that
node already has an asset linked, a warning message will be displayed.
Linking can also be performed by selecting Link to asset… from context menu of node (or other type of object) and
choosing an asset. If that asset already has a node linked, a warning message will be displayed.
To unlink, select Unlink from asset context menu or Unlink from asset from node context menu.

368 Chapter 34. Hardware Asset Management

CHAPTER

THIRTYFIVE

BUSINESS SERVICES

35.1 Introduction
In a nutshell, Business Services is a tool for availability monitoring of logical services. Company email, web site, server
farm, call center - all are examples of logical services. Moreover, the services can be combined together to define a
“broader” logical service. Company email, web site, name server and firewall all can be referred to as “Company Internet
Services” andmonitored for availability as a whole. So if the name server goes down then the “Company Internet Services”
do not function properly as a whole. This feature can be used both for internal QA and external Service Level Agreement
(SLA) monitoring.

35.2 Business service object
35.2.1 Business Service
Business Services represented with service checks and a tree-like hierarchy of other business services. For each service in
the hierarchy, NetXMS keeps track of all downtime cases so later user can request calculation of availability percentage
for required time period. To check availability at any particular level, select Business Service object in the Object Browser,
choose Availability tab and select time period.
Business service contains two NXSL scripts in configuration: for object automatic binding and for DCI automatic binding.
Those scripts can be used to automatically populate Business service with resources that require monitoring. Service
checks can be automatically created and also removed if “Auto remove” filter option is selected.

35.2.2 Service check
Service check is a test whose result is used to define the state of the service. There can be 3 types of checks: DCI check,
object check and NXSL script. Service check can have one of statuses: OK, Failed or Degraded. Degraded status means
that object ot DCI status is not Normal, but is less worse then threshold for this check, this state will not change state of
business service to failed and will not affect availability percentage.

DCI check
DCI check is based on the status of DCI. DCI status is calculated from the status of threshold (if it is active) and severity
of active threshold. DCI check has its own status threshold starting from which check is counted as failed. Threshold can
be set separately for each check. If default value is chosen, value of “BusinessServices.Check.Threshold.DataCollection”
server configuration variable is used.

369

NetXMS Administrator Guide, Release 5.2.0

Object check
Object check is based on object status. Object check has it’s own status threshold starting from which check is
counted as failed. Threshold can be set separately for each check. If default value is chosen, value of “BusinessSer-
vices.Check.Threshold.Objects” server configuration variable is used.

NXSL script check
NXSL script check either returns success (the test result ok) or failure (the service has failed). For success “true” should
be returned, and “false” for failure. In addition failure reason can be returned from the script - script should return textual
with the reason, this is interpreted as failed check.
There are the following special variables which can be used in NXSL scripts for service checks:

• $object - points to the object for which the check is executed
• $node - points to the current node for which the check is executed. Will be null, if the object, for which the check
is executed is not a node.

• $service - the business service this check belongs to

35.3 Business service prototype
To avoid manually defining of the same business service multiple times (for multiple clients or infrastructure items) you
can create business service prototype. The principle behind business service prototype is very similar to DCI instance
discovery. There is instance discovery options and script to filter it. For instances that passed the filter business services
are created. In object and DCI auto-apply scripts of created business services information about instance value and id of
business service prototype are available.

35.4 Configuration and usage
For both configuration and monitoring use Business Service perspective.

370 Chapter 35. Business services

NetXMS Administrator Guide, Release 5.2.0

Fig. 1: Business service perspective

35.4.1 Configuration
To define a new service select Create business service from the context menu in Object Browser and enter the service
name. Then in newly created service you may want to define checks or define check auto apply scripts in business service
properties.

35.4. Configuration and usage 371

NetXMS Administrator Guide, Release 5.2.0

Fig. 2: Business service checks

Business service prototype is defined the same way, but it is also required to configure Instance Discovery method.

35.4.2 Monitoring
Business service availability for exact period can be checked using Availability tab. It has predefined time ranges and
a date selector for arbitrary date range. A list of problems occurred for a business service is also shown with detailed
information, start time, end time and reason.

372 Chapter 35. Business services

NetXMS Administrator Guide, Release 5.2.0

Fig. 3: Availability pie chart and details

35.4. Configuration and usage 373

NetXMS Administrator Guide, Release 5.2.0

374 Chapter 35. Business services

CHAPTER

THIRTYSIX

REMOTE FILE MANAGEMENT

36.1 Agent file management
36.1.1 Introduction
This section describes possibilities to manage files on remote nodes using agent and required configuration for it.

36.1.2 Required Configuration
Subagent configuration
To do any manipulations with files on a node it is required to load filemng subagent and configure accessible paths. It
provides possibility to upload, download, delete, move and rename files.
All configuration parameters related to filemng subagent should be placed into [filemgr] section of agent’s configuration
file. The following configuration parameters are supported:

Parame-
ter

Description

Root-
Folder

Path to the folder which should be exposed. If “;ro” is appended to path - agent will reject any write
operations with this folder

Agent’s configuration file example:

MasterServers = netxms.demo

SubAgent = filemgr.nsm

[filemgr]

RootFolder = /home/zev # read/write access

RootFolder = /home/zev/etc # read/write access

RootFolder = /logs;ro # read only access

Access rights
To view File Manager View it’s enough to have “Read” access to node.
To download files from file manager of through multiple file download there should be “Download file” access for this
node and for multiple download “Read server files” access.
To upload file from subagent there should be “Upload file” access for this node.
For moving, renaming and deleting files from node it is required “Manage files” access to node.

375

NetXMS Administrator Guide, Release 5.2.0

36.1.3 File Manager view
For each configured node it is possible to open File Manager. It will display all configured root folders and allow to browse
into these folders.

File menu
• Download… : downloads file to selected folder on local computer
• Show : shows file with tail option ‘on’
• Rename : renames file
• Delete : deletes file

Folder menu
• Upload file… : uploads local file to selected folder in view
• Upload folder… : uploads local folder to selected folder in view (not supported on web client)
• Download… : download folder to selected folder on local computer (on web client will be advised to save as a zip
of the selected folder)

• Rename : renames folder
• Delete : deletes folder and all it’s content
• Refresh this folder : refreshes content of selected folder in view

376 Chapter 36. Remote file management

NetXMS Administrator Guide, Release 5.2.0

Other options
• It is possible to move files and folders with help of drag and drop.
• To refresh all view should be used view refresh button (not form folder menu). But in this case all expanded folders
will be closed.

36.2 Advanced File Management
There are options to run multiple file upload to agents, file upload jobs on hold and scheduled file upload jobs. All this
options are available uploading file from server to agent. That means that before upload file should be uploaded to server
for instruction check Upload file on server section.
Advanced file upload can be accessed selecting required nodes (can be selected more than one with help of ‘Ctrl’ key) and
in object menu selecting Upload file….

Job configuration:
• File that should be uploaded on the agent(s).
• Remote file path(If destination will not be set then as a destination will be taken from agent’s config parameter
‘FileStore’). If path is set agent will check if there is access to this folder. Access is configured by filemgr
subagent, check Agent file management.

36.2. Advanced File Management 377

NetXMS Administrator Guide, Release 5.2.0

• Job can be created “on hold”. This mean that job will be created, but not started. After creation it can be
manually started selecting job in Server Jobs view and clicking Unhold.

• Other option is to schedule file upload job. It can scheduled to be executed once at exact time (One time
execution) or to be executed according to schedule(Cron schedule). See Cron format for supported cron
format options.

Result of file upload job can be checked in Server Jobs view. It can be accessed by clicking View ‣ Server Jobs.

36.3 Server File Management
36.3.1 Access Rights
There are 2 access rights that can be granted:

• Read server files : possibility to see files that are download on server
• Manage server files : possibility to remove or upload on server files

36.3.2 Upload file on server
It can be done in “Server File List” view

or “Tools”->”Upload file to server…”.

378 Chapter 36. Remote file management

CHAPTER

THIRTYSEVEN

PACKAGE MANAGEMENT

37.1 Introduction
The package management functionality can upload and execute installers via the NetXMS agent. This allows to perform
centralized upgrade of the NetXMS agent, to install other software or upload and extract archive files onto target systems.
To access package management, open the Configuration perspective and select Packages. Software packages are first
uploaded to the NetXMS server. In order to do this, select Upload to server and select a file.
For some types of packages, the additional dialog Edit Package Metadata is displayed. This allows to specify additional
metadata for a package. Whenever possible, metadata information is filled in automatically based on information con-
tained in file name.
You can open the metadata editor by double-clicking on a package in the list. In the metadata editor Name, Version and
Description are just informative fields, they are not used in package processing.
Platform denotes for which platforms a package is applicable. The actual platform of a node is compared to this field
as string value using wildcard characters. Two wildcard characters are supported: * - represents zero, one or multiple
characters. ? - represents any single character. Setting Platform to * would mean any platform. Linux* would mean
both 32 and 64 bit Linuxes.
Type defines package type. This defines how the agent should process the package when installing it. The meaning of the
Command field depends on the package type. See information in the table below.
The following types of package files are supported by package management:

379

NetXMS Administrator Guide, Release 5.2.0

Package type Extension Description
NetXMS Agent Package (agent-
installer)

.apkg Command is not used by this package type.

Debian/Ubuntu Package .deb Command contains additional parameters passed to
/usr/bin/dpkg

Executable .exe Command is optional. If specified, it sets the actual com-
mand executed by agent. ${file} macro will be re-
placed by actual file name.

Windows Installer Package .msi Command contains additional parameters passed to Win-
dows installer API

Windows Installer Patch .msp Command contains additional parameters passed to Win-
dows installer API

Windows Update Package .msu Command contains additional parameters passed to
wusa.exe

Red Hat Package .rpm Command contains additional parameters passed to
/usr/bin/rpm

NetXMS Package Info .npi Deprecated type of metadata file for NetXMS Agent
Package.

Compressed TAR Archive .tgz, .tar.gz Command is optional. If specified, it defines the path the
archive should be extracted to.

ZIP Archive .zip Command is optional. If specified, it defines the path the
archive should be extracted to.

To deploy a package, select one or several nodes from Infrastructure services or Entire Network. You can also select
containers or subnets. Right-click on the selected items and select Deploy package…. Select the package and click OK.
During the package deployment process, the server will request the platform name from agent and check if it matches
Platform from the package metadata. The deployment process is shown in the Package deployment monitor tab that is
visible on all relevant containers, subnets and nodes.

380 Chapter 37. Package management

CHAPTER

THIRTYEIGHT

REPORTING

Reporting module is an optional component, build on top of well known JasperReports library, which can produce pixel-
perfect documents in variety of formats based on historical data collected by NetXMS.
Reporting module is a separate process that communicates with NetXMS and handles execution and rendering of reports.
Report generation is two step process: first step is to collect and process input data, then render output files in desired
format. This separation exist for a reason: unlike rendering step, data collection could take hours to complete and it make
no sense to repeat same processing process to render Excel file instead of PDF. When first step is finished, all processed
information is saved into intermediate file on the reporting server and available for rendering at any time (e.g. user can
render and download report from last year, even if source data is already purged).
Reports execution and rendering can be initiated both manually and on schedule.

38.1 User Interface
All reporting-related operations are available in Management Client in a separate Reporting perspective. Perspective
contains two main areas - list of available reports on the left and report details view on the right. Details view show
information about currently selected report.

Fig. 1: Reporting perspective.

Details view contains tree main areas: Parameters, Schedules, and Results.

381

http://community.jaspersoft.com/project/jasperreports-library

NetXMS Administrator Guide, Release 5.2.0

38.1.1 Parameters

Fig. 2: Execution parameters for report (in this example: Start date)

In this section, user can set all input parameters required for report execution, for example data range or list of objects
which should be included in the report. List of required parameters is extracted from report definition file and can be
empty, if particular report do not require any input data to operate.

38.1.2 Schedules
Each report can have one or more schedules, which define when it should be executed, and optionally rendered. Reporting
server can also notify users that new report is executed and available for download, or send resulting file as an attachment.

Fig. 3: List of scheduled executions

To add new schedule, click on Add Schedule down below, this will open schedule editor.

Fig. 4: Schedule editor with two tabs, General and Notifications

General tab contains four scheduling options:
1. Once - execute report once at specified date and time
2. Daily - execute report every day at specified time
3. Weekly - execute report every week on selected days of week at specified time

382 Chapter 38. Reporting

NetXMS Administrator Guide, Release 5.2.0

4. Monthly - execute report every month on selected days at specified time

Fig. 5: Notifications tab of Schedule editor

Notification tab allows to control email notifications and report delivery to list of recipients. To enable notifications, select
Send notification on job completion checkbox.
If checkbox Attach rendered report checkbox is enabled, report will be rendered into selected format and attached to
notification email.

38.1.3 Results section

Fig. 6: List of generated reports

This section contains list of all generated reports, which are stored on the server and can be rendered on request. To
render report in desired format, right click on the record and select Render to PDF or Render to Excel.
If report is no longer needed, right click on record and select Delete to completely remove it from server.

38.1. User Interface 383

NetXMS Administrator Guide, Release 5.2.0

38.2 Installation
On Linux platforms where packages are provided reporting module is available in netxms-reporting package.
On Windows reporting module is a part of NetXMS server installer. Java 11 or later is required by reporting module.

38.3 Configuration
38.3.1 NetXMS Server
NetXMS server maintain persistent connection with reporting server on localhost:4710, but it can be changed in config-
uration.

Configuration Parameter Description Default Value
EnableReportingServer Boolean on/off switch which enable integration 0
ReportingServerHostname IP address or hostname of the reporting server localhost
ReportingServerPort Port number of the reporting server 4710

NetXMS server connects andmaintains connection to reporting server on the given hostname and port. Via this connection
reporting server receives all necessary configuration and database credentials that are needed for operation.

38.3.2 Reporting Server
Reporting module has so-called workspace directory which contains report definitions (in “definitions” subdirectory) and
intermediate report data (in “output” subdirectory).
On Linux for reporting module installed from packages workspace directory is /var/lib/netxms/nxreportd.
If $NETXMS_HOME environment variable is set, workspace directory is $NETXMS_HOME/var/lib/nxreportd.
On Windows workspace directory is located var\nxreportd in NetXMS installation folder, for default installation
location it’s C:\NetXMS\var\nxreportd.

38.3.3 Report definitions
Report definitions are .jar files prepared by Jaspersoft® Studio. During operation reporting server scans
workspace/definitions directory for *.jar files. Each file is unpacked into it’s own folder based on jar name (e.g. “re-
port1.jar” will be unpacked into “report1”). Each archive should contain at least one file - “main.jrxml”, which is main
report definition. It can also contain subreports, images - or anything else, supported by Jasper Reports. Any additional
resources should be referenced using paths relative to root folder of unpacked report, which is set as additional parameter
“SUBREPORT_DIR” (e.g. “$P{SUBREPORT_DIR}/logo.png”).
Archive can also contain java code, which will be used as data provider (instead of querying SQL
database). Reporting server will try to load class “report.DataSource”, which should implement interface
“com.radensolutions.reporting.custom.NXCLDataSource” (attached sample: Event Processing Policy). Query string lan-
guage in jrxml should be set to “nxcl” (default - SQL).
Simplest way to create jar files are using Maven, empty project is provided in samples archive. Running “mvn package”
will produce complete jar file in “target” directory.

384 Chapter 38. Reporting

CHAPTER

THIRTYNINE

IMAGE LIBRARY

All images used on maps or as rack, chassis or chassis module images must be uploaded to the Image Library first. It is
possible to upload, delete and update images. They can be organized in categories.

Tips:
• Images on maps are displayed without scaling.

385

NetXMS Administrator Guide, Release 5.2.0

386 Chapter 39. Image library

CHAPTER

FORTY

MOBILE CLIENT

NetXMS mobile client is a monitoring tool for Android devices running version 2.2. and later.
Currently, only a small subset of the functions present in the Desktop/Web edition are implemented, mainly read/only
operations. The next paragraphs briefly describes each section.

40.1 Main window
Here you can see how appears the main window and the underneath levels.

387

NetXMS Administrator Guide, Release 5.2.0

388 Chapter 40. Mobile Client

NetXMS Administrator Guide, Release 5.2.0

40.1. Main window 389

NetXMS Administrator Guide, Release 5.2.0

From the main window it is possible to get access to the following menu items:
• Settings: select this item to configure the client.
• Reconnect: select this item to force a reconnection to the server to gather new collected data.
• Disconnect & Exit: select this item to stop the client and exit from the app.

Underneath levels have menu that are context dependent, a detailed description can be found in each section.

40.2 Alarms
Alarms section is used to list and manage all pending alarms, eventually filtered on a particular node/container. Through
this view it is possible to manage alarms:

• Actions:
– Acknowledge: acknowledge the alarm.
– Sticky acknowledge: sticky acknowledge the alarm.
– Resolve: resolve the alarm.
– Terminate: terminate the alarm.
– View last values: jump to the node info section to view the last values for the node that generated the
alarm.

• Sort:
– Sort by severity ascending: sort list using event severity as criteria, ascending.
– Sort by severity descending: sort list using event severity as criteria, descending.

390 Chapter 40. Mobile Client

NetXMS Administrator Guide, Release 5.2.0

– Sort by date ascending: sort list using date of event as criteria, ascending.
– Sort by date descending: sort list using date of event as criteria, descending.
– Sort by node name ascending: sort list using node name that generated the event as criteria, ascending.
– Sort by node name descending: sort list using node name that generated the event as criteria, descending.

• Select all: select all the alarms from the list
• Unselect all: clear any selection of alarms from the list

40.3 Dashboard
Dashboards are defined by administrator and allow to combine any available visualization components with data from
multiple sources in order to create high-level views to see network (or parts of it) health at a glance. Not all elements are
currently available for the mobile client, dashboards are properly refreshed according to their schedule. Due to dashboard
size, keep in mind that Smartphones cannot be the best device to show them, a tablet is much more suitable device. Here
an example:

40.4 Nodes
This section is used to list and manage all nodes (all network infrastructure monitored by NetXMS are represented as a
set of objects. Each object represents one physical or logical entity, or group of them). Objects can be organized into
hierarchical structure, the Nodes section is used to explore them. In the right bottom corner of the icon there is a symbol
that indicates the status of the node/container following the same symbology used on the desktop client. Clicking on a
container will show the items inside, continuing to click up to an object will show a set of swipeable pages:

• Overview: here are presented the main info associated to this node, such as the name, the primary IP, the status,
etc.

40.3. Dashboard 391

NetXMS Administrator Guide, Release 5.2.0

• Alarms: here are presented the list of pending alarms (if any) for this node, with the possibility to manage them
with the following commands:

– Actions:
∗ Acknowledge: acknowledge the alarm.
∗ Sticky acknowledge: sticky acknowledge the alarm.
∗ Resolve: resolve the alarm.
∗ Terminate: terminate the alarm.
∗ View last values: jump to the node info section to view the last values for the node that generated the
alarm.

– Select all: select all the alarms from the list
– Unselect all: clear any selection of alarms from the list

• Last values: here are presented the DCI collected for this node, as well as the possibility to draw the following
graphics (for one or more values):

– Last half hour: draw one or more line graphs for the last half hour collected values
– Last hour: draw one or more line graphs for the last hour collected values
– Last two hours: draw one or more line graphs for the last two hours collected values
– Last four hours: draw one or more line graphs for the last four hours collected values
– Last day: draw one or more line graphs for the last day collected values
– Last week: draw one or more line graphs for the last week collected values
– Bar chart: draw a bar chart with the last collected value
– Pie chart: draw a pie chart with the last collected value

• Interfaces: here are presented all the interfaces associated to this node. For each interface it is possible to instruct
the following commands:

– Manage: interface will be put in manage state
– Unmanage: interface will be put in unmanaged state
– Change expected state: change the expected interface state, possible values:

∗ UP: interface expected state will be put in UP state
∗ DOWN: interface expected state will be put in DOWN state
∗ IGNORE: interface expected state will be put in IGNORE state

• Find switch port: will start the search for a connection point (if available)

392 Chapter 40. Mobile Client

NetXMS Administrator Guide, Release 5.2.0

40.4. Nodes 393

NetXMS Administrator Guide, Release 5.2.0

394 Chapter 40. Mobile Client

NetXMS Administrator Guide, Release 5.2.0

40.5 Graphics
Predefined graphics are defined by administrator and can be used to view collected data in a graphical form (as a line chart).
Currently, the mobile client doesn’t autorefresh the content of the graphic selected. Here an example of a predefined
graphs:

40.6 MACaddress
This section is used to list previously searched MAC addresses or to start a new search by scanning a barcode value (this
feature needs the installation of Barcode Scanner from Zxing Team - freely available on the Google Play), by input it
manually or by getting it directly from a node via the “Find Switch port” command.

40.7 Settings
This section is used to configure the behavior of the client.

40.8 Global settings
• Autostart on boot: check to automatically start the agent on boot (to be effective, app must not be moved to SD
card).

40.5. Graphics 395

NetXMS Administrator Guide, Release 5.2.0

40.9 Connection
40.9.1 Parameters
Allows selecting the parameters used to connect to the server:

• Server: address of the server (IP or name).
• Port: port of the server (default 4701).
• User name: username to connect to the server.
• Password: password to connect to the server.
• Encrypt connection: when selected challenges an encryption strategy with the server (depending on sup-
ported/configured providers).

40.9.2 Scheduler
Enables the possibility to define periodic connections to the server. If the scheduler is not enabled the app will try to
connect to the server every time it detects a new connection (data or WiFi) and remains always connected as far as the
connection remains active:

• Enable scheduler: check this to enable the scheduler.
• Frequency (min): amount of time, in minutes, that has to elapse between each tentative of connection to the server
to send the gathered info.

• Duration (min): amount of time, in minutes, that has to elapse before disconnect from the server.
• Daily scheduler: provides the ability to define a “one range” daily on which the agent is operational. Out
of the specified range the app will not try to connect to the server to gather the new events:

– Daily activation on: start time for daily activation.
– Daily activation off: stop time for daily activation.

40.10 Notifications
40.10.1 Connection status
This section is to manage the notifications related to the connection status.

• Notification behavior: defines which kind of action should trigger notifications to the user. Possible
options:

– Never: ignore connection status
– When connected: notify when connection is successful
– When disconnected: notify when connection is unsuccessful
– Always: notify either connection successful and connection unsuccessful

• Toast notification: provides connection notification via “toast” , behavior is defined by “Notification behavior”.

• Icon notification: provides connection notification via icon in the status bar, behavior is defined by “Notification
behavior”.

396 Chapter 40. Mobile Client

NetXMS Administrator Guide, Release 5.2.0

40.10.2 Alarms
• Alarms notification: select to enable alarms notification in the status bar.
• Alarms sound by severity: for each of the following categories:

– Normal

– Warning

– Minor

– Major

– Critical

40.11 Interface
40.11.1 Multipliers
Allows to select the preferred multipliers to be used to show values. Allowed options: * None: do not apply multiplier,
values are extended. * Decimal: applies a decimal multiplier (power of 10, e.g. 1000 -> 1K, 1000000 -> 1M, …) *
Binary: applies a binary multiplier (power of 2, e.g. 1024 -> 1Ki, 1048576 -> 1Mi, …)

40.11.2 Graph text size
Allows to set the text size to be used for axis labels (if the default value is too small for high density devices).

40.11.3 Show legend in graphs
Allows to select to show or not the legend in the top right angle of the graphs. Since legend can be intrusive, especially
when there are several lines plotted, user can select to disable the legend.

40.11. Interface 397

NetXMS Administrator Guide, Release 5.2.0

398 Chapter 40. Mobile Client

CHAPTER

FORTYONE

WEB API/REST API

41.1 Introduction
The NetXMS WebAPI is being developed to support larger integration possibilities for the NetXMS server and is based
on the RESTful philosophy. API calls are REST-like (although not purely RESTful) and uses JSON for data exchange.
The API currently supports Grafana integration and some additional parameters for integration. The NetXMS WebAPI
is currently in very early development!
Information about Grafana configuration can be found here.

41.2 Installation
41.2.1 Requirements

• A running instance of the NetXMS server.
• Access to a web server.

41.2.2 Setup
1. Download netxms-websvc-VERSION.war (example: netxms-websvc-2.2.15.war) file from http://www.netxms.

org/download page.
2. Copy the downloaded .war file to your web server.

By default localhost address is used to connect to NetXMS Server. To specify server address or other parameters, create
a nxapisrv.properties file and place it in the property file location of your web server. File should have parameters
in ini format: NAME=VALUE. The following parameters are supported:

• netxms.server.address
• netxms.server.enableCompression
• netxms.server.port
• session.timeout

Configuration example:

netxms.server.address=server.office.radensolutions.com

netxms.server.port=44701

399

http://www.netxms.org/download
http://www.netxms.org/download

NetXMS Administrator Guide, Release 5.2.0

41.3 Implemented functionality
41.3.1 Authentication
Login
Any user account configured in NetXMX can be used to authenticate to Rest API, however this user should have access
right to objects that will be requested through the API.
There are 3 implemented options of authentication:

1. Basic authentication for Rest API session creation, more information can be found on Wikipedia
2. Through POST request for Rest API session creation
3. Through POST request to allow external software user authentication using NetXMS user accounts. To be able to

login using this authentication type, user account should have “External tool integration account” access right set.

Creating Rest API session:

Request type: POST
JSON data:

{"login":"admin","password":"netxms"}

Request path: API_HOME/sessions
Return data:

On success server will set cookie session_handle and json with session GUID and server version. When
performing subsequent requests, session GUID should be provided in Session-Id: field of request’s header or
the cookie should be passed.

Performing external authentication:

Request type: POST
JSON data:

{"login":"admin","password":"netxms"}

Request path: API_HOME/authenticate
Return data:

The API will return a 200 response if the credentials are correct, a 400 response if either login or password
is not provided or 401 if the provided credentials are incorrect.

Authentication used to gain Rest API session.

Logout
To log out request with given session ID.
Request type: DELETE
Request path: API_HOME/sessions/{sid}
Return data:

The API will return a 200 response if log out succeed.

400 Chapter 41. Web API/Rest API

http://en.wikipedia.org/wiki/Basic_access_authentication

NetXMS Administrator Guide, Release 5.2.0

41.3.2 Objects
Get multiple objects with filters
Request to get all objects available to this user or to get objects that fulfill filter requirements and are available to this user.
Request type: GET
Request path: API_HOME/objects
Filter options:

• area=geographical area
• class=comma-separated class list
• name=pattern or regex, if useRegex=true
• parent=parent object id
• topLevelOnly=boolean - select top level objects only. false by default
• useRegex=boolean - treat name and custom attribute value as regex. false by default

• zone=comma-separated list of zone UINs
• @custom_attribute_name=pattern or regex, if useRegex=true

Return data:
Will return filtered objects or all objects available to user.

Get object by id
Request to get exact object identified by ID or GUID.
Request type: GET
Request path: API_HOME/objects/{object-id}
Return data:

Object information identified by provided ID or GUID.

Create object
Request to create new object.
Request type: POST
JSON data:

JSON object can contain fields form 2 filed entities:
• Creation fields

• Modification fields

Minimal JSON for node creation under “Infrastructure Services” object:

{"objectType": 2, "name":"testNode", "parentId": 2, "primaryName":"10.5.0.12

↪→" }

Minimal JSON for container creation under “Infrastructure Services” object:

{"objectType": 5, "name":"New container", "parentId": 2}

41.3. Implemented functionality 401

NetXMS Administrator Guide, Release 5.2.0

Request path: API_HOME/objects
Return data:

New object ID.

{ "id": 15130 }

Update object
Request to update object.
Request type: PATCH
Request path: API_HOME/objects/{object-id}
JSON data:

JSON object can contain Modification fields.
Fields that are not set will not be updated. Array elements will be replaced fully (if new array does not
contain old elements - they will be deleted).
Json to update object’s custom attributes (json should contain all custom attributes, attributes that are not
part of JSON will be deleted):

{

"customAttributes": {

"test attr2": {

"value": "new value"

},

"test attr": {

"value": "new value"

}

}

}

Get object by id
Request to delete object.
Request type: DELETE
Request path: API_HOME/objects/{object-id}
Return data:

Object information identified by provided ID or GUID.

Creation fields
This list represents all fields that are object creation fields. Note that this is common list for any type of object.

402 Chapter 41. Web API/Rest API

NetXMS Administrator Guide, Release 5.2.0

Field name Type Comment
objectType Integer Possible options:

• SUBNET: 1
• NODE: 2
• INTERFACE: 3
• NETWORK: 4
• CONTAINER: 5
• ZONE: 6
• SERVICEROOT: 7
• TEMPLATE: 8
• TEMPLATEGROUP: 9
• TEMPLATEROOT: 10
• NETWORKSERVICE: 11
• VPNCONNECTOR: 12
• CONDITION: 13
• CLUSTER: 14
• OBJECT_BUSINESSSERVICE_PROTOTYPE:
15

• NETWORKMAPROOT: 19
• NETWORKMAPGROUP: 20
• NETWORKMAP: 21
• DASHBOARDROOT: 22
• DASHBOARD: 23
• BUSINESSSERVICEROOT: 27
• BUSINESSSERVICE: 28
• NODELINK: 29
• SLMCHECK: 30
• MOBILEDEVICE: 31
• RACK: 32
• ACCESSPOINT: 33
• CHASSIS: 35
• DASHBOARDGROUP: 36
• SENSOR: 37

name String Object name
parentId Long Parent object id this object to be created under
comments String Object comment
creationFlags Integer Bit flags for object creation. Possible options:

• DISABLE ICMP: 0x0001
• DISABLE NXCP: 0x0002
• DISABLE SNMP: 0x0004
• CREATE UNMANAGED: 0x0008
• ENTER MAINTENANCE: 0x0010
• AS ZONE PROXY: 0x0020
• DISABLE ETHERNET IP: 0x0040
• SNMP SETTINGS LOCKED: 0x0080
• EXTERNAL GATEWAY: 0x0100

primaryName String Node primary name (IP address or dns name)
agentPort Integer Node agent port
snmpPort Integer Node SNMP port
etherNetIpPort Integer Node ethernetIP port

continues on next page

41.3. Implemented functionality 403

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Field name Type Comment
sshPort Integer Node ssh port
ipAddress String Interface IP address
agentProxyId Long Node agent proxy id
snmpProxyId Long Node SNMP proxy id
etherNetIpProxyId Long Node ethernetIP proxy id
icmpProxyId Long Node ICMP proxy id
sshProxyId Long Node ssh proxy id
mapType Integer Network map type
seedObjectIds Long[] Network map seed objects
zoneUIN Integer Subnet/Node/Zone zone UIN
serviceType Integer Network service types:

• CUSTOM: 0
• SSH: 1
• POP3: 2
• SMTP: 3
• FTP: 4
• HTTP: 5
• HTTPS: 6
• TELNET: 7

ipPort Integer Network Service IP port
request String Network Service request
response String Network Service response
linkedNodeId Long Linked object for Node Link object
template Boolean If service check object is template
macAddress String Interface or sensor MAC address
ifIndex Integer Interface index
ifType Integer Interface type
module Integer Interface module number
port Integer Interface port
physicalPort Boolean IF interface has physical port
createStatusDci Boolean IF status DCI should be created for network service
deviceId String Mobile device ID
height Integer Rack height
controllerId Long Chassis controller node id
sshLogin String Node ssh login
sshPassword String Node password
deviceClass Integer Sensor device class
vendor String Sensor vendor
commProtocol Integer Sensor communication protocol
xmlConfig String Sensor XML config
xmlRegConfig String Sensor XML registration config
serialNumber String Sensor serial number
deviceAddress String Sensor device address
metaType String Sensor meta type
description String Sensor description
sensorProxy Long Sensor proxy node id

continues on next page

404 Chapter 41. Web API/Rest API

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Field name Type Comment
instanceDiscoveryMethod Business service instance dis-

covery method
Possible values:

• IDM_AGENT_LIST - 1
• IDM_AGENT_TABLE - 2
• IDM_SCRIPT - 5

Modification fields

Note

Starting from version 4 isAutoBindEnabled and isAutoUnbindEnabled replaced by autoBindFlags

Field name Type Comment
name String
primaryName String
alias String
nameOnMap String
acl AccessListElement[] inheritAccessRights should be provided in the same

request
inheritAccessRights Boolean acl should be provided in the same request
customAttributes JSON object {String: Custom-

Attribute}
Object name is custom attribute name and value is
in CustomAttribute object

autoBindFilter String
version Integer
description String
agentPort Integer
agentSecret String
agentProxy Long
snmpPort Integer
snmpVersion String Node SNMP version:

• V1
• V2C
• V3
• DEFAULT

snmpAuthMethod Integer snmpAuthName, snmpAuthPassword, snmpPriv-
Password, snmpPrivMethod should be provided in
the same request

snmpPrivMethod Integer snmpAuthName, snmpAuthPassword, snmpPriv-
Password, snmpAuthMethod should be provided in
the same request

snmpAuthName String snmpAuthPassword, snmpPrivPassword, snmpAu-
thMethod, snmpPrivMethod should be provided in
the same request

snmpAuthPassword String snmpAuthName, snmpPrivPassword, snmpAuth-
Method, snmpPrivMethod should be provided in
the same request

continues on next page

41.3. Implemented functionality 405

NetXMS Administrator Guide, Release 5.2.0

Table 2 – continued from previous page
Field name Type Comment
snmpPrivPassword String snmpAuthName, snmpAuthPassword, snmpAuth-

Method, snmpPrivMethod should be provided in
the same request

snmpProxy Long
icmpProxy Long
trustedNodes Long[]
geolocation Geolocation
mapBackground String UUID.

mapBackgroundLocation, mapBackgroundLo-
cation, mapBackgroundZoom, mapBackground-
Color should be provided in the same request.

mapBackgroundLocation Geolocation mapBackground, mapBackgroundLocation, map-
BackgroundZoom, mapBackgroundColor should
be provided in the same request.

mapBackgroundZoom Integer mapBackground, mapBackgroundLocation,
mapBackgroundLocation, mapBackgroundColor
should be provided in the same request.

mapBackgroundColor Integer mapBackground, mapBackgroundLocation, map-
BackgroundLocation, mapBackgroundZoom
should be provided in the same request.

mapImage String UUID
columnCount Integer
script String
activationEvent Integer
deactivationEvent Integer
sourceObject Long
activeStatus Integer
inactiveStatus Integer
drillDownObjectId Long
pollerNode Long
requiredPolls Integer
serviceType Integer
ipProtocol Integer
ipPort Integer
ipAddress String Network service IP address
request String Network service IP request
response String Network service IP response
objectFlags Integer Object flags specific for each object. Possible values

can be found in NXSL documentation under each
object. (Example: Node flags)
objectFlagsMask should be provided in the same
request.

objectFlagsMask Integer Bitmask that defines which bits in objectFlags will
have effect. objectFlags should be provided in the
same request.

ifXTablePolicy Integer
reportDefinition String
networkList String[] IP address list
statusCalculationMethod Integer
statusPropagationMethod Integer

continues on next page

406 Chapter 41. Web API/Rest API

https://www.netxms.org/documentation/nxsl-latest/#_constants_6

NetXMS Administrator Guide, Release 5.2.0

Table 2 – continued from previous page
Field name Type Comment
fixedPropagatedStatus String Object status:

• NORMAL
• WARNING
• MINOR
• MAJOR
• CRITICAL
• UNKNOWN
• UNMANAGED
• DISABLED
• TESTING

statusShift Integer
statusTransformation ObjectStatus[] Object status mapping list. Possible values:

• NORMAL
• WARNING
• MINOR
• MAJOR
• CRITICAL
• UNKNOWN
• UNMANAGED
• DISABLED
• TESTING

statusSingleThreshold Integer
statusThresholds Integer[]
expectedState Integer
linkColor Integer
connectionRouting Integer
discoveryRadius Integer
height Integer
filter String
peerGatewayId Long
localNetworks String[] VPN networks IP address. remoteNetworks should

be provided in the same request.
remoteNetworks String[] VPN networks IP address. localNetworks should

be provided in the same request.
postalAddress PostalAddress
agentCacheMode String Possible values:

• DEFAULT
• ON
• OFF

agentCompressionMode String Possible values:
• DEFAULT
• ENABLED
• DISABLED

continues on next page

41.3. Implemented functionality 407

NetXMS Administrator Guide, Release 5.2.0

Table 2 – continued from previous page
Field name Type Comment
mapObjectDisplayMode String Possible values:

• ICON
• SMALL_LABEL
• LARGE_LABEL
• STATUS
• FLOOR_PLAN

physicalContainerObjectId Long
rackImageFront String UUID.

rackImageRear, rackPosition, rackHeight, rackO-
rientation should be provided in the same request.

rackImageRear String UUID.
rackImageFront, rackPosition, rackHeight, rackO-
rientation should be provided in the same request.

rackPosition Short rackImageFront, rackImageRear, rackHeight,
rackOrientation should be provided in the same
request.

rackHeight Short rackImageFront, rackImageRear, rackPosition,
rackOrientation should be provided in the same
request.

rackOrientation String Possible values:
• FILL
• FRONT
• REAR

rackImageFront, rackImageRear, rackPosition,
rackHeight should be provided in the same request.

dashboards Long[]
rackNumberingTopBottom Boolean
controllerId Long
chassisId Long
sshProxy Long
sshLogin String
sshPassword String
sshPort Integer
sshKeyId Integer
zoneProxies Long[]
urls ObjectUrl[]
seedObjectIds Long[]
macAddress String Sensor mac address
deviceClass Integer
vendor String
serialNumber String
deviceAddress String
metaType String
sensorProxy Long
xmlConfig String
snmpPorts String[]
responsibleUsers Long[]

continues on next page

408 Chapter 41. Web API/Rest API

NetXMS Administrator Guide, Release 5.2.0

Table 2 – continued from previous page
Field name Type Comment
icmpStatCollectionMode String Possible values:

• DEFAULT
• ON
• OFF

icmpTargets String[] ICMP ping targets IP addresses
chassisPlacement String
etherNetIPPort Integer
etherNetIPProxy Long
certificateMappingMethod String Possible values:

• SUBJECT
• PUBLIC_KEY
• COMMON_NAME
• TEMPLATE_ID

certificateMappingData should be provided in the
same request.

certificateMappingData String certificateMappingMethod should be provided in
the same request.

categoryId Integer
geoLocationControlMode GeoLocationControlMode Possible values:

• NO_CONTROL
• RESTRICTED_AREAS
• ALLOWED_AREAS

geoAreas long[]
instanceDiscoveryMethod Business service instance dis-

covery method
Possible values:

• IDM_AGENT_LIST - 1
• IDM_AGENT_TABLE - 2
• IDM_SCRIPT - 5

instanceDiscoveryData Business service instance dis-
covery data

instanceDiscoveryFilter Business service instance dis-
covery data filtering script

autoBindFilter2 Second binding script used for
DCI binding. Currently used
in business service

autoBindFlags Auto bind bit flags First script is currently used for object bind/unbind,
second for dci bind/unbind. Possible values:

• First script for auto bind is enabled - 0x0001
• First script for auto unbind is enabled -
0x0002

• Second script for auto bind is enabled -
0x0004

• Second script for auto unbind is enabled -
0x0008

continues on next page

41.3. Implemented functionality 409

NetXMS Administrator Guide, Release 5.2.0

Table 2 – continued from previous page
Field name Type Comment
objectStatusThreshold Business service default

threshold for auto created
object checks

Possible values:
• Default - 0
• Warning - 1
• Minor - 2
• Major - 3
• Critical - 4

dciStatusThreshold Business service default
threshold for auto created
DCI checks

Possible values:
• Default - 0
• Warning - 1
• Minor - 2
• Major - 3
• Critical - 4

sourceNode Id of source node for busi-
ness service instance discov-
ery methods

GeoLocation fields

Field name Type Comment
type Integer Available options:

• UNSET: 0
• MANUAL: 1
• GPS: 2
• NETWORK: 3

latitude Double
longitude Double
accuracy int Location accuracy in meters
timestamp Integer UNIX timestamp

410 Chapter 41. Web API/Rest API

NetXMS Administrator Guide, Release 5.2.0

AccessListElement fields

Field name Type Comment
userId Long
accessRights Integer Bit flag field. Available options:

• OBJECT ACCESS READ: 0x00000001
• OBJECT ACCESS MODIFY: 0x00000002
• OBJECT ACCESS CREATE: 0x00000004
• OBJECT ACCESS DELETE: 0x00000008
• OBJECT ACCESS READ ALARMS:
0x00000010

• OBJECT ACCESS ACL: 0x00000020
• OBJECT ACCESS UPDATE ALARMS:
0x00000040

• OBJECT ACCESS SEND EVENTS:
0x00000080

• OBJECT ACCESS CONTROL:
0x00000100

• OBJECT ACCESS TERM ALARMS:
0x00000200

• OBJECT ACCESS PUSH DATA:
0x00000400

• OBJECT ACCESS CREATE ISSUE:
0x00000800

• OBJECT ACCESS DOWNLOAD:
0x00001000

• OBJECT ACCESS UPLOAD: 0x00002000
• OBJECT ACCESS MANAGE FILES:
0x00004000

• OBJECT ACCESS MAINTENANCE:
0x00008000

• OBJECT ACCESS READ AGENT:
0x00010000

• OBJECT ACCESS READ SNMP:
0x00020000

• OBJECT ACCESS SCREENSHOT:
0x00040000

CustomAttribute fields

Field name Type Comment
value String Attribute value
flags Long Available options:

• INHERITABLE: 1

41.3. Implemented functionality 411

NetXMS Administrator Guide, Release 5.2.0

PostalAddress fields

Field name Type Comment
country String
city String
streetAddress String
postcode String

Bind object
Request to bind object to container. Container id is specified in URL, object id in JSON.
Request type: POST
JSON data:

Bind object to object in URL:

{"id": 15130}

Request path: API_HOME/objects/{object-id}/bind

Bind node to
Request to bind object under container. Container id is specified in JSON, object id in URL.
Request type: POST
JSON data:

Bind object in URL to “Infrastructure service”:

{"id": 2}

Request path: API_HOME/objects/{object-id}/bind-to

Unbind node
Request to unbind object from container. Container id is specified in URL, object id in JSON.
Request type: POST
JSON data:

Unbind object from container in URL:

{"id": 15130}

Request path: API_HOME/objects/{object-id}/unbind

UnbindFrom node
Request to unbind object from container. Container id is specified in JSON, object id in URL.
Request type: POST
JSON data:

Unbind object in URL from “Infrastructure service”:

412 Chapter 41. Web API/Rest API

NetXMS Administrator Guide, Release 5.2.0

{"id": 2}

Request path: API_HOME/objects/{object-id}/unbind-from

Poll object
Create object poll request
Request type: POST
JSON data:

{"type": "status"}

One of the following poll types:
• configuration full
• configuration
• discovery
• interface
• status
• topology

Request path: API_HOME/objects/{object-id}/polls
Return data:

Will return UUID of request, that should be used to get request output and request type.

{ "id": 15130,

"type": "status" }

Get object poll data
Get object poll request data
Request type: GET
Request path: API_HOME/objects/{object-id}/polls/output/{request-UUID}
Return data:

Will return request output data.

{ "streamId": 0,

"completed": false,

"message": "Poll request accepted..." }

Change object zone
Added in version 4.4.4.
Request to move object to new zone. Zone UIN is specified in JSON, object id in URL.
Request type: POST
JSON data:

41.3. Implemented functionality 413

NetXMS Administrator Guide, Release 5.2.0

Move object specified in URL to “Default” zone:

{"zoneUIN": 0}

Request path: API_HOME/objects/{object-id}/change-zone

41.3.3 Business Services
Get checks
Request all business service checks
Request type: GET
Request path: API_HOME/objects/{object-id}/checks

Create new check
Create new business service check
Request type: POST
Request path: API_HOME/objects/{object-id}/checks
JSON data:

Create new script business service check:

{

"checkType": "SCRIPT",

"description": "Web created script",

"script": "return OK;",

"objectId": 0,

"dciId": 0,

"threshold": 0

}

Update existing check
Update existing business service check
Request type: PUT
Request path: API_HOME/objects/{object-id}/checks/check-id
JSON data:

Update existing business service check to object check with object ID “166”:

{

"checkType": "OBJECT",

"description": "Web created script",

"script": "return OK;",

"objectId": 166,

"dciId": 0,

"threshold": 0

}

414 Chapter 41. Web API/Rest API

NetXMS Administrator Guide, Release 5.2.0

Delete existing check
Delete existing business service check
Request type: DELETE
Request path: API_HOME/objects/{object-id}/checks/check-id

Get tickets
Get ticket list for given time range.
Request type: GET
Request path: API_HOME/objects/{object-id}/tickets
Time range can be requested in 2 ways.
First option is back from now with given parameters:

• timeUnit=Type of time range. Possible values: MINUTE, HOUR, DAY
• timeRage=Range in given units

Second option is fixe time range:
• start=UNIX timestamp

• end=UNIX timestamp

Get uptime
Get uptime for given time range.
Request type: GET
Request path: API_HOME/objects/{object-id}/uptime
Time range can be requested in 2 ways.
First option is back from now with given parameters:

• timeUnit=Type of time range. Possible values: MINUTE, HOUR, DAY
• timeRage=Range in given units

Second option is fixe time range:
• start=UNIX timestamp

• end=UNIX timestamp

41.3.4 Alarms
Full scope of currently active alarms can be obtained or object specific list.

Get multiple alarms with filters
Request to get all active alarms available to this user or to get active alarms that fulfill filter requirements and are available
to this user.
Request type: GET
Request path: API_HOME/alarms
Filter options:

41.3. Implemented functionality 415

NetXMS Administrator Guide, Release 5.2.0

• alarm=list of alarm states. Possible values: outstanding, acknowledged, resolved

• createdBefore=UNIX timestamp

• createdAfter=UNIX timestamp

• objectId=ID or related object

• objectGuid=GUID or related object

• includeChildObjects=boolean. Set to true to get alarms of container child objects
• resolveReferences=resolve IDs into human readable data
• updatedBefore=UNIX timestamp

• updatedAfter=UNIX timestamp

Return data:
Will return filtered active alarms or all active alarms available to user.

Alarm by id
Request to get an alarm by it’s ID.
Request type: GET
Request path: API_HOME/alarms/{alarm-id}
Return data:

Will return alarm specified by ID.

41.3.5 Data collection configuration
Get data collection configuration
Request type: GET
Request path: API_HOME/objects/{object-id}/data-collection
Filter options (all are case-insensitive):

• dciName=text that name should contain
• dciNameRegexp=regular expression for name
• dciDescription=text that description should contain
• dciDescriptionRegexp=regular expression for description

Return data:
Will return data collection configuration.

Create DCI
Request type: POST
Request path: API_HOME/objects/{object-id}/data-collection
JSON data:

Create new DCI (name, description and valueType are obligatory fields):

416 Chapter 41. Web API/Rest API

NetXMS Administrator Guide, Release 5.2.0

{

"name": "Agent.Version",

"description": "Version of agent",

"origin": "AGENT",

"pollingInterval": "120",

"pollingScheduleType": "1",

"retentionType": "1",

"retentionTime": "60",

"valueType" : "single"

}

Note

valueType should be one of the following: * single * table

Update DCI
Request to get last values of DCI identified by ID for exact object identified by ID or GUID.
Request type: PUT
Request path: API_HOME/objects/{object-id}/data-collection/{dci-id}
JSON data:

Update existing DCI setting custom polling interval and custom retention time (name and description are
obligatory fields):

{

"name": "Agent.Version",

"description": "Version of agent",

"pollingInterval": "120",

"pollingScheduleType": "1",

"retentionType": "1",

"retentionTime": "60"

}

41.3.6 DCI data
DCI values
Request to get last values of DCI identified by ID for exact object identified by ID or GUID.
Request type: GET
Request path: API_HOME/objects/{object-id}/data-collection/{dci-id}/values
Filter options:

• from=requested period start time as unix timestamp
• to=requested period end time as unix timestamp
• timeInterval=requested time interval in seconds
• itemCount=number of items to be returned

Return data:

41.3. Implemented functionality 417

NetXMS Administrator Guide, Release 5.2.0

Will return DCI values for requested node limited by filters.

DCI last value
Request to get last value of DCI identified by ID for exact object identified by ID or GUID.
Request type: GET
Request path: API_HOME/objects/{object-id}/data-collection/{dci-id}/last-value
Filter options:

• rowsAsObjects=true or false. Determines how table DCI is returned

Return data:
Will return last value of DCI.

Object last values
Request to get DCI last values of object.
Request type: GET
Request path: API_HOME/objects/{object-id}/last-values
Filter options (all are case-insensitive):

• dciName=text that name should contain
• dciNameRegexp=regular expression for name
• dciDescription=text that description should contain
• dciDescriptionRegexp=regular expression for description

Return data:
Will return DCI last values of object.

Query last values
Request type: GET
Request path: API_HOME/objects/{object-id}/data-collection//query?query=**{filter string}**
Filter string options:

• NOT negation of following filtering parameter
• Description
• GUID
• Id
• Name
• PollingInterval
• RetentionTime
• SourceNode

Example filter string:
Name:FileSystem.UsedPerc PollingInterval:60

418 Chapter 41. Web API/Rest API

NetXMS Administrator Guide, Release 5.2.0

Adhoc summary table
Option to get last values for multiple nodes(for all nodes under provided container) for the same DCIs. Required DCIs
and container are provided in request.
Request type: POST
Request path: API_HOME/summary-table/ad-hoc
POST request JSON

{

"baseObject":"ContainerName",

"columns": [

{

"columnName":"Free form name that will be used in return table for this column

↪→",

"dciName":"Name of DCI, that will be used for filtering"

},

{

"columnName":"Name2",

"dciName":"DCIName2"

}

]

}

Return data:
Will return adhoc summary table configured accordingly to request json.

41.3.7 Object tools
List of available object tools
Request to object tools available to specified object.
Request type: GET
Request path: API_HOME/objects/{object-id}/object-tools

Execute object tool
Request to object tools available to specified object.
Request type: POST
Request path: API_HOME/objects/{object-id}/object-tools
JSON data:

{

"toolData":{

"id": "1234",

"inputFields":{

"field1": "value1",

"field2": "1000"

}

}

}

41.3. Implemented functionality 419

NetXMS Administrator Guide, Release 5.2.0

Return data:
Will return JSON with UUID and toolId. UUID can be supplied to this endpoint (with GET request) to view
object tool output: API_HOME/objects/{object-id}/object-tools/output/{uuid}. With POST request to the
same endpoint execution of object tool can be stopped.

41.3.8 Persistent storage
Get all persistent storage variables
Request to get all persistent storage variables available to this user.
Request type: GET
Request path: API_HOME/persistent-storage
Return data:

Will return all persistent storages in “key”:”value” format.

Get persistent storage variable by key
Request to get persistent storage value by key.
Request type: GET
Request path: API_HOME/persistent-storage/{key}
Return data:

Will return corresponding persistent storages value in “value”:”value” format.

Create persistent storage variable
Request to create new persistent storage variable.
Request type: POST
JSON data:

JSON object should contain two fields: key and value.

{"key": "a"}

{"value": "10"}

Request path: API_HOME/persistentstorage
Return data:

Will return newly created persistent storages in “key”:”value” format.

Update persistent storage variable
Request to update specified persistent storage variable value.
Request type: PUT
JSON data:

JSON object should contain one field: new value.

{"value": "10"}

420 Chapter 41. Web API/Rest API

NetXMS Administrator Guide, Release 5.2.0

Request path: API_HOME/persistentstorage/{key}
Return data:

Will return updated persistent storages in “key”:”value” format.

Delete persistent storage variable
Request to delete persistent storage variable.
Request type: DELETE
Request path: API_HOME/persistentstorage/{key}

41.3.9 User agent notifications
TODO

41.3.10 Push DCI data
Request to push values for one or multiple DCIs. Node and DCI can be specified either by id or by name. If both id and
name are provided, id has priority.
Request type: POST
JSON data:

To send value for one DCI JSON object should contain the following:

{

"nodeId" : 10,

"dciId" : 20,

"value" : "Value"

}

Or, alternatively using node and DCI names:

{

"nodeName" : "Node name",

"dciName" : "DCI name",

"value" : "Value"

}

To send value for several DCIs JSON object should contain an array:

[

{

"nodeId" : 10,

"dciId" : 20,

"value" : "Value"

},

{

"nodeName" : "Node name",

"dciName" : "DCI name",

"value" : "Value"

}

]

Request path: API_HOME/pushData

41.3. Implemented functionality 421

NetXMS Administrator Guide, Release 5.2.0

41.3.11 Predefined graphs
TODO

422 Chapter 41. Web API/Rest API

CHAPTER

FORTYTWO

ADVANCED TOPICS

42.1 Zones
As NetXMS server keeps track of an IP topology, it is important to maintain the configuration in which IP addresses do
not overlap and that two IP addresses from same subnet are really within one subnet. Sometimes, however, it is needed to
monitor multiple sites with overlapping IP address ranges. To correctly handle such situation, zoning must be used. Zone
in NetXMS is a group of IP subnets which form non-overlapping IP address space. There is always zone 0 which contains
subnets directly reachable by management server. For all other zones server assumes that subnets within that zones are
not reachable directly, and proxy must be used.

42.1.1 Enable Zoning
Zoning support is off by default. To turn it on you must set server’s configuration variable EnableZoning to 1 and restart
server. After restart, server will create default zone with UIN (unique identification number) 0 and put all existing subnets
into that zone. Subnet tree will looks like this:

423

NetXMS Administrator Guide, Release 5.2.0

42.1.2 Setting communication options for zones
Server have to know proxy nodes to be able to communicate with nodes in remote zones. Default proxy settings for all
nodes in the zone can be set on Communications page in zone object properties:

On this page you can set default proxy node for NetXMS agents, SNMP, and ICMP. Note that proxy node must be in
default zone and must have primary IP reachable by NetXMS server.

42.1.3 Moving nodes between zones
To move existing node to another zone, select Change zone from nodes context menu, then select target zone in zone
selection dialog that will appear. After move to another zone, server will immediately do configuration poll on the node.

42.1.4 Integration with external HelpDesk
NetXMS provides possibility to create issues in external helpdesk system directly from NetXMS management client,
based on pending alarms. In this situation NetXMS and external helpdesk system will have synchronized issue workflow.
For now integration is done only with JIRA.

42.1.5 JIRA Module
This module provide integration between NetXMS and JIRA.

Required NetXMS configuration
For NetXMS is required to configure server parameters and restart the server.

424 Chapter 42. Advanced topics

NetXMS Administrator Guide, Release 5.2.0

Parameter name Description
HelpDeskLink For JIRA integration should be set to “jira.hdlink” (without quotes)
Jira.IssueType Name of the JIRA issue type, which will be used by NetXMS. Sample value: “Task”

(without quotes)
Jira.Login Login of the JIRA user(This user should exist in JIRA system with with permissions to

create issues in project(JiraProjectCode) and comment on own issues)
Jira.Password Password of the JIRA user
Jira.ProjectCode Project Key in JIRA. (Project should exist)
Jira.ProjectComponent Jira project component. (Project should exist)
Jira.ResolvedStatus Comma separated list of issue status codes indicating that issue is resolved. Default is

“Done”.
Jira.ServerURL URL of JIRA installation. Example: “http://localhost:8080/jira”. Please note, that trail-

ing slash (“/”) should be removed!
Jira.Webhook.Path Path part of Jira webhook URL (must start with /). Example: “/jira-webhook”.
Jira.Webhook.Port Jira webhook listener port (0 to disable webhook). Default: “8008”.

Note

Starting from version 4.1.283 NetXMS version Webhook can be used for Jira to NetXMS integration. Not a jira
plugin.

If all configuration was successfully done after rester in console should be present:

[25-Apr-2014 14:16:07.894] [INFO] Helpdesk link module JIRA (version 1.2.14) loaded␣

↪→successfully

Required JIRA configuration
NetXMS JIRA plugin should be deployed to JIRA and configured. REST API should be enabled in JIRA configuration
(enabled in default configuration).
To access configuration page for the plugin, go to “System → Advanced” and select “NetXMS Integration” tab:

42.1. Zones 425

http://localhost:8080/jira

NetXMS Administrator Guide, Release 5.2.0

Possible configuration options:
1. “Plugin Enabled” — global on/off switch, plugin completely cease any activity when turned off (default).
2. “Force Save” — by default, plugin will verify configuration before saving (connectivity to all servers, credentials).

This checkbox allows to bypass this step completely and save configuration even if one of more NetXMS servers
are rejecting provided credentials or do not respond at all)

3. “Project Key” — Key of the project, where issues from NetXMS will be created. This key will be also used in
workflow operations — plugin will process events related to this project:

4. “Servers” — addresses of up to a 3 NetXMS servers, can be either IP address or hostname.
5. “Log In” — user login in NetXMS (User should exist in NetXMS with Read, View Alarms, Acknowledge Alarms,

Terminate Alarms to all nodes)
6. “Password” — user password in NetXMS

Plugin will verify configuration and provide feedback. If one or more NetXMS servers are not responding (e.g. they are
not configured yet), you can select “Force Save” to overrule verification process and save configuration.

Workflow configuration
Since JIRA workflow can be much more sophisticated than alarm states in NetXMS, JIRA Administrator should decide
which workflow transition should change NetXMS alarm state.
NetXMS supports four alarm states:

1. Outstanding — initial state, can’t be set from JIRA side

426 Chapter 42. Advanced topics

NetXMS Administrator Guide, Release 5.2.0

2. Acknowledged — operator is aware of the problem and it’s in progress (“Acknowledge” action)
3. Resolved — problem is resolved but alarm stays in the list until verified and terminated by supervisor (“Resolve”

action)
4. Terminated — problem is resolved and verified, alarm is removed from the list (“Terminate” action)

Sample workflow (JIRA default workflow):

Sample mapping:

Transition NetXMS post-function action
Start Progress Acknowledge
Resolve Issue Resolve
Close Issue Terminate
All other transitions Ignored

Configure workflow in JIRA:
1. Create new Workflow Schema if required
2. Copy existing or create new Workflow
3. Assign Workflow to the project, where NetXMS will create issues
4. Modify transitions to call plugin’s post-function and change related alarm in NetXMS

a. Click on a “cog” icon on a transition and select “View Post Functions”:

42.1. Zones 427

NetXMS Administrator Guide, Release 5.2.0

b. Click on “Add a new post function to the unconditional result of the transition”:

c. Select “NetXMS Modify Alarm” and click “Add”:

d. Select desired alarm action (Acknowledge / Resolve / Terminate) and click “Add”:

428 Chapter 42. Advanced topics

NetXMS Administrator Guide, Release 5.2.0

e. Repeat for all required transitions
5. Publish workflow changes

Ticket creation
Tickets are created from from alarms manually. To create ticket user should have “Create helpdesk tickets” access for
required objects.
Steps to create ticket:

1. Right click on alarm in NetXMS and select “Create ticket in helpdesk system”:

2. In a moment, issue will be created and Helpdesk ID will be show in corresponding column:

3. Right click on the alarm and select “Show helpdesk ticket in web browser” to navigate to the issue in JIRA:

42.2 Hooks
Sometimes it is required to add some additional functionality after poll, object creation or other action - for this purpose
hooks were created. Hook is manually created script in Script Library that is executed at a special condition like end of
the poll or interface creation.
More about poll types and purposes can be found there and about script creation there.

42.2. Hooks 429

NetXMS Administrator Guide, Release 5.2.0

To be recognized as a hook script should have special name. It should be named according to convention:
Hook::hook_name.
Example: Hook::ConfigurationPoll
Full list of hooks:

Hook name Description Parameters Return value
Hook::StatusPoll Hook that is executed at the

end of status poll
$object - current object, one
of ‘NetObj’ subclasses
$node - current object if it is
‘Node’ class

none

Hook::ConfigurationPoll Hook that is executed at the
end of configuration poll

$object - current object, one
of ‘NetObj’ subclasses
$node - current object if it is
‘Node’ class

none

Hook::InstancePoll Hook that is executed after in-
stance discovery poll.

$object - current object, one
of ‘NetObj’ subclasses
$node - current object if it is
‘Node’ class

none

Hook::TopologyPoll Hook that is executed at the
ens of topology poll

$node - current node, object
of ‘Node’ type

none

Hook::CreateInterface Hook that is executed after
new interface is created.

$node - current node, object
of ‘Node’ type
$1 - current interface, object
of ‘Interface’ type

true/false -
boolean - whether
interface should
be created

Hook::AcceptNewNode This hook is executed by dis-
covery process, after a new
node is found and it’s checked
that no node with give IP ad-
dress is present in the system
and before any network dis-
covery filters.

$ipAddr - IP address of the
node being processed
$ipNetMask - netmask of the
node being processed
$macAddr - MAC address of
the node being processed
$zoneUIN - zone UIN of the
node being processed

true/false -
boolean - whether
node should be
created

Hook::DiscoveryPoll Hook that is executed at the
end of discovery poll

$node - current node, object
of ‘Node’ type

none

Hook::PostObjectCreate Hook that is executed after
object is created

$object - current object, one
of ‘NetObj’ subclasses
$node - current object if it is
‘Node’ class

none

Hook::CreateSubnet Hook that is executed on sub-
net creation

$node - current node, object
of ‘Node’ class
$1 - current subnet, object of
‘Subnet’ class

true/false -
boolean - whether
subnet should be
created

Hook::UpdateInterface Hook that is executed at the
end of interface update

$node - current node, object
of ‘Node’ type
$interface - current interface,
object of ‘Interface’ type

none

continues on next page

430 Chapter 42. Advanced topics

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Hook name Description Parameters Return value
Hook::EventProcessor Hook that is executed for each

event prior to it’s processing
by Event Processing Policies.

$object - event source object,
one of ‘NetObj’ subclasses
$node - event source object if
it is ‘Node’ class
$event - event being pro-
cessed (object of ‘Event’
class)

none

Hook::AlarmStateChange Hook that is executed on
alarm state change (alarm
gets acknowledged, resolved
or terminated)

$alarm - alarm being pro-
cessed (object of ‘Alarm’
class)

none

Hook::UnboundTunnelOpened Hook that is executed when
tunnel connection is estab-
lished, but not bound to a
node.

$tunnel - incoming tunnel in-
formation (object of ‘Tunnel’
class)

none

Hook::BoundTunnelOpened Hook that is executed when
tunnel connection bound to a
node is established.

$node - node this tunnel was
bound to (object of ‘Node’
class)
$tunnel - incoming tunnel in-
formation (object of ‘Tunnel’
class)

none

Hook::LDAPSynchronization Hook executed for each
LDAP record (user or group)
during LDAP synchroniza-
tion.

$ldapObject - LDAP object
being synchronized (object of
‘LDAPObject’ class)

true/false -
boolean - whether
processing of this
LDAP record
should continue

Hook::Login Hook executed prior to user
login

$user - user object (object of
‘User’ class)
$session - session object (ob-
ject of ‘ClientSession’ class)

true/false -
boolean - whether
login for this
session should
continue

Usually hooks are used for automatic actions that need to be done on node. For example automatic remove change of
expected state of interface depending on some external parameters.

42.3 Troubleshooting
42.3.1 Resetting “system” user password

Warning

Server (“netxmsd”) should be stopped while performing password reset operation!

Passwords in NetXMS are stored in hashed, not-reversible way, so there are no way to recover it, but it can be reset. Use
following procedure to reset password and unlock account:

1. stop netxmsd
2. run “nxdbmgr reset-system-account” to unlock “system” account and change it’s password to default (“netxms”).

42.3. Troubleshooting 431

NetXMS Administrator Guide, Release 5.2.0

3. start netxmsd
4. login as “system” using password “netxms”
5. In user manager change password for any admin user account
6. login as admin user and disable “system” user account

42.3.2 Enable Crash Dump Generation
When running onWindows server is capable of creating crash dumps. To enable crash dump generation, add the following
options to netxmsd.conf file:

CreateCrashDumps = yes

DumpDirectory = path

DumpDirectory must point to directory writable by server process. After each crash server will create two files: info
and mdmp. Info file contains basic information about crash, server version, and call stack of current thread. Mdmp file
is a minidump which can be read and analyzed using debugger.

42.3.3 Force Crash Dump Creation
It is possible to force creation of crash dump. To do that you’ll need access to server debug console. You can access it
using nxadm tool or via Tools ‣ Server Console menu in management client. Once in server debug console, you can run
command dump or raise access. First command works only on Windows and will produce process dump without
stopping it. Second command will cause access violation exception which will lead to process crash and crash dump
generation.

42.3.4 SNMP Device not recognized as SNMP-capable
Common issues:

1. Invalid community string or credentials
2. Access control on the device or firewall prevent connections from NetXMS server
3. Device do not support System (.1.3.6.1.2.1.1) or Interfaces (.1.3.6.1.2.1.2) MIBs, which are used to detect

SNMP-capable devices. To override OIDs used for detection, set node’s custom attribute snmp.testoid to any
OID supported by device.

42.4 Automatic actions on a new node
On a new node creation is generated SYS_NODE_ADDED event. So any automatic actions that should be done on a node
can be done by creating EPP rule on on this event, that will run script. In such way can be done node bind to container,
template auto apply and other automatic actions.

42.5 Autologin for Management Client
It is possible to connect management client (nxmc) or web management client to server automatically without login dialog.
This chapter describes additional command line options and URL parameters for that.

432 Chapter 42. Advanced topics

NetXMS Administrator Guide, Release 5.2.0

42.5.1 Desktop Management Client

Command line option Description
-auto Connect to server automatically without login dialog
-dashboard=dashboard Automatically open given dashboard after login (either dashboard object ID or

name can be specified)
-login=login Set login name
-password=password Set password, default is empty
-server=address Set server name or IP address

For example, to connect management client to server 10.0.0.2 as user guest with empty password, use command

nxmc -auto -server=10.0.0.2 -login=guest

42.5.2 Web Management Client

URL parameters Description
auto Connect to server automatically without login dialog
dashboard=dashboard Automatically open given dashboard after login (either dashboard object ID or

name can be specified)
login=login Set login name
password=password Set password, default is empty
server=address Set server name or IP address

For example, to connect web management console to server 10.0.0.2 as user guest with empty password and open dash-
board called “SystemOverview”, use URL

http://server/nxmc?auto&server=10.0.0.2&login=guest&dashboard=SystemOverview

42.6 NetXMS data usage in external products
NetXMS provides next options to use data in other applications:

• Use autologin and dashboard name in URL to add dashboard to your company documentation(where URL usage
is possible).

• Use Grafana for graph creation and further usage
• Get data throughWeb API

42.7 Find Object
Management client has an option to filter objects by defined by user criteria. Filter can be access by Tools->Find Object.
Filter can be used in two different modes: filter and query.

42.7.1 Filter
Filter will search object using class filter, zone filter, IP range and search string that will be checked for each object in all
it’s text fields (name, comments, custom attributes, Location, etc.).

42.6. NetXMS data usage in external products 433

NetXMS Administrator Guide, Release 5.2.0

42.7.2 Query
There can be written any script that will be executed on all objects and if stript returns true - object will be shown in the
resulting table. There can be used the same syntax as for Object query Dashboard element, but variables will not be added
as additional columns for table in this case.

42.8 Audit log forwarding
42.8.1 Syslog
NetXMS allows to forward audit log to another syslog server to have all data in one place.
Next configuration parameters should be set in order to forward audit log to external syslog server:

Name Description
ExternalAuditFacility Syslog facility to be used in audit log records sent to ex-

ternal server.
ExternalAuditPort UDP port of external syslog server to send audit records

to.
ExternalAuditServer External syslog server to send audit records to. If set to

“none”, external audit logging is disabled.
ExternalAuditSeverity Syslog severity to be used in audit log records sent to ex-

ternal server.
ExternalAuditTag Syslog tag to be used in audit log records sent to external

server.

42.8.2 LEEF
LEEF server module provides functionality to send audit log to IBM Security QRadar. The Log Event Extended Format
(LEEF) is a customized event format for IBM Security QRadar. More about it can be found there.
LEEF server module should be enabled in server configuraiton file by adding “Module=leef.nxm” line to netxmsd.conf
file.
Additionally to module configuration “LEEF” section should be added with required configurations.

Name Description
Server Server address
Port Server port
EventCode LEEF event code
RFC5424Timestamp “No” if RFC5424 Timestamp format should not be used

(default value is Yes)
Facility Facility as facility in syslog
Severity Severity as severity in syslog
Product LEEF product field, by default will be “NetXMS”
ProductVersion LEEF product version field, by default will be server ver-

sion
Vendor LEEF vendor field, default it “Raden Solutions”
Separator LEEF separator character as a char or in numeric format:

“xHH”, where HH is hexdecimal digit

Additional fields can be configured in ExtraData sub section in the same key=value format.

434 Chapter 42. Advanced topics

https://www.ibm.com/docs/en/dsm?topic=leef-overview

NetXMS Administrator Guide, Release 5.2.0

Example:

[LEEF]

Server = 127.0.0.1

Port = 514

Facility = 13

Severity = 5

EventCode =

Separator = ^

[LEEF/ExtraData]

key = value

key2 = value2

42.9 Custom housekeeping scripts
To customize housekeeper operations it’s possible to use custom scripts. Scripts are executed in the end of housekeeping
process. Due to security considerations scrips are stored on server file system in <DataDirectory>/housekeeper
folder, where <DataDirectory> is path to server data directory (see DataDirectory parameter in Server configuration
file (netxmsd.conf) for more information). Multiple scripts can be present in the mentioned folder.
Two types of scripts are supported:

• SQL (files with .sql extension) - file containing SQL queries. SQL query can take multiple lines, end of query
is denoted with semicolon (;) character

• NXSL (files with .nxsl extension) - file contains NXSL script. In addition to all standard NXSL functionality,
SQLQuery() NXSL function is supported, allowing SQL query execution to the database.

To implement custom deletion of DCI and Table DCI data built-in deletion of this data can be disabled by setting server
configuration parameter Housekeeper.DisableCollectedDataCleanup.

42.10 Fanout drivers
NetXMS has concept of fanout driver, which enable collected data sending to an additional database.

42.10.1 InfluxDB
To enable InfluxDB fanout driver, add PerfDataStorageDriver=influxdb to netxmsd.conf file. Driver configu-
ration is specified in [InfluxDB] section.

42.9. Custom housekeeping scripts 435

NetXMS Administrator Guide, Release 5.2.0

Name Description
Bucket Bucket name.
EnableUnsignedType Enable (true) or disable (false) unsigned data type. If dis-

abled, values for DCIs with unsigned data types will be
sent as signed type. Default: false.

Database Database name. Default value is netxms.
Hostname Hostname. Default is localhost.
MaxCacheWaitTime Maximum time in ms before cache being flushed. Default

is 30000.
Password Password.
Port Network port number
Protocol Options are: udp, api-v1 and api-v2. Default it udp.
QueueFlushThreshold Cache will be flushed when reaching this size (in bytes).

Default: 32768
Queues Number of queues for parallel operation. Default: 1.
QueueSizeLimit Upper limit on queue size in bytes. If queue reaches this

size, data will be dropped. Default: 4194304.
Token Authentication token.
ValidateValues (from 5.1.2) If true, driver will validate values according to DCI data

type, and drop invalid values (invalid numbers, out-of-
range values). Default: false

CorrectValues If both ValidateValues and CorrectValues set to true, in-
stead of dropping values that did not pass validation, cor-
rect values will be sent to InfluxDB instead. Unparsable
numbers will be set to last parsable part (for example,
123abc will be sent as 123), out-of-range values will be
sent as maximal or minimal possible value. Default: false

Configuration example:

PerfDataStorageDriver=influxdb

[InfluxDB]

Protocol=api-v2

Organization=netxms

Bucket=netxms

Token=MJzXfwcNm7uEu4mL31S-iVjZ-DJO9pPbCuDl90XotOS3TyY9VkVMoDr5o4u4w8opucyZ2-

↪→MwcrpfC2zymbcj2Q==

Details of operation
Field key is made from DCI’s metric name (except for SNMP and internal “Dummy” DCIs where description is used).
Space characters are removed, :-.,# characters are replaced with _, \ is replaced with /.
Empty DCI values are not sent.
If custom attribute named ignore_influxdb (with any value) exists on a node, this node will be excluded from export. Also,
if a DCI has Related Object set to an interface and this interface has ignore_influxdb custom attribute, this DCI will be
ignored.
If there is custom attribute on the node or on related object with name starting with tag_, it’s name (excluding tag_ part)
and value will be used as tag. There can be several such custom attributes.

436 Chapter 42. Advanced topics

CHAPTER

FORTYTHREE

SCHEDULED TASKS

NetXMS provides the option to schedule different tasks. Each task has its own parameter count and type. The only
common parameter is the node on which task will be executed. The schedule time can be set in two ways: as a one time
schedule or as a cron task (see Cron format for supported cron format options).

Information about available tasks can be found there:
1. File Upload
2. Script Execution
3. Maintenance

43.1 File Upload
The task is named Upload.File. This task uploads a file from the server to the agent. The file to be uploaded must exist
at the server file storage. Task can be created in the Schedules view or in the Upload file… dialog.
Parameters:

1. File name that should be uploaded
2. Path and file name where this file should be uploaded on the agent

Example: Warning-C.wav,/destination/location/Warning-C.wav

437

NetXMS Administrator Guide, Release 5.2.0

43.2 Script Execution
The task is named Execute.Script. This task executes a script from the library. The selected node is set as the $node
variable in the script.
Parameters:

1. Server script name

43.3 Package deploy
The task is named Agent.DeployPackage. This task schedules package deployment via agent which has been created in
Configuration -> Packages section. The task handler Agent.DeployPackage expects parameter string as set of key=value
entries separated by semicolons. Currently only one key is supported - “package”.
Parameters:

1. Package ID

43.4 Maintenance
The tasks are namedMaintenance.Enter andMaintenance.Leave. These tasks turn on and turn off maintenance mode for
selected node. More about maintenance mode can be found there.
These tasks do not require parameters.

43.5 Access Rights
Access right for schedules can be separated into two parts. Rights that are required to create, edit and delete tasks and
rights that are required to schedule the exact task type. Task can be created by the user or by the system.
Overall access rights:

Access right Description
Manage user scheduled
tasks

Option to add, view, edit, delete users’ tasks

Manage own scheduled
tasks

Option to add, view, edit, delete tasks created by this user

Manage all scheduled tasks Option to add, view, edit, delete tasks created by user and system

Task specific access rights:

438 Chapter 43. Scheduled tasks

NetXMS Administrator Guide, Release 5.2.0

Schedule type Required access right
File Upload Schedule file upload task
Script Execution Schedule script task
Maintenance Schedule object maintenance

For some tasks like File.Upload there is an additional check if the user has permissions to upload the file to this node and
if there is access to the specific folder. Access rights like this are checked during task execution, not during scheduling.
If the user does not have access, then the task will fail.

43.5. Access Rights 439

NetXMS Administrator Guide, Release 5.2.0

440 Chapter 43. Scheduled tasks

CHAPTER

FORTYFOUR

SCRIPTING

44.1 NXSL
44.1.1 Overview
In many parts of the system, fine tuning can be done by using NetXMS built-in scripting language called NXSL (stands
for NetXMS Scripting Language). NXSL was designed specifically to be used as embedded scripting language within
NetXMS, and because of this has some specific features and limitations. Most notable is very limited access to data
outside script boundaries - for example, from NXSL script you cannot access files on server, nor call external programs,
nor even access data of the node object other than script is running for without explicit permission. NXSL is interpreted
language - scripts first compiled into internal representation (similar to byte code in Java), which is then executed inside
NXSL Virtual Machine. Language syntax and available functions can be found in NXSL documentation.

List of places where NXSL scripting is used
• Script library
• DCI transformation scripts
• DCI instance filter script
• DCI scripted threshold
• DCI summary table object filter script
• Container, template, cluster auto-bind script
• SNMP trap transformation script
• EPP filter script
• EPP inline script actions
• Map object filter script
• Map link styling script
• Dashboard scripted chart
• Dashboard status indicator
• Context dashboard auto-bind script
• Business service scripted check
• Business service DCI auto apply script
• Business service object auto apply script
• Business service prototype instance filter script

441

https://www.netxms.org/documentation/nxsl-latest/

NetXMS Administrator Guide, Release 5.2.0

• Asset attribute auto fill script
• Object query
• Agent configuration filter script
• Condition status calculation script
• Custom housekeeping scripts (see Custom housekeeping scripts)

44.1.2 Scripting library
Script Library is used to store scripts that can be afterwards executed as macros, part of other script or from debug server
console. Scripts can be added, deleted and modified in in this view.

Usage
Scripts from Script Library can be accessed as:

1. a macros %[scriptName]
2. used in action of type “Execute NXSL script”
3. executed from DCIs with “Script” source
4. functions can be called from other scripts either by using “import scriptName“ and calling functions by name,

or without import, by calling “scriptName::functionName“
5. executed from server debug console “execute scriptName“
6. scripts having name starting with “Hook::“ are executed automatically, e.g. “Hook::ConfigurationPoll” is

being run on each node’s configuration poll

Note

All parameters provided to script are accessible via $ARGS array. The other option to use parameters is to specify
main() function in the script and define parameters in it’s definition.

44.1.3 Execute Server Script
This view allows to execute arbitrary script. Script can be manually created just before execution, and saved afterwards,
can be taken from the script library or modified script can be used from the script library and saved or saved as afterwards.
If this view is opened on a node, then in the script $node variable is available with node object. All parameters provided
to script, like $node, $object, $isCluster, $ARGV, etc, are accessible via $ARGS array. Please refer to NXSL Guide for
more information.

442 Chapter 44. Scripting

https://netxms.org/documentation/nxsl-latest/

NetXMS Administrator Guide, Release 5.2.0

44.2 NXShell
NXShell is based on Jython and provide access to NetXMS Java API using interactive shell. NXShell binary comes with
server distribution suite and can be run from shell or crontab. NXShell is also build as single jar file, which includes all
required libraries.
Download: http://www.netxms.org/download/nxshell-VERSION.jar (example: http://www.netxms.org/download/
nxshell-5.0.8.jar)

44.2. NXShell 443

http://www.netxms.org/download/nxshell-VERSION.jar
http://www.netxms.org/download/nxshell-5.0.8.jar
http://www.netxms.org/download/nxshell-5.0.8.jar

NetXMS Administrator Guide, Release 5.2.0

44.2.1 Usage
NXShell binary gets installed in $NETXMS_HOME directory, for example /usr/bin/nxshell. As of version 5.1, nxshell
launcher accepts command line -r or –properties= for providing path to nxshell properties file.
Usage: nxshell [OPTIONS] [script]

Options:
-C, --classpath <path> Additional Java class path.
-D, --debug Show additional debug output (use twice for extra output).
-h, --help Display this help message.
-H, --host <hostname> Specify host name or IP address. Could be in host:port form.
-j, --jre <path> Specify JRE location.
-n, --no-sync Do not synchronize objects on connect.
-p, --port <port> Specify TCP port for connection. Default is 4701.
-P, --password <password> Specify user’s password. Default is empty.
-r, --properties <file> File with additional Java properties.
-t, --token <token> Login to server using given authentication token.
-u, --user <user> Login to server as user. Default is “admin”.
-v, --version Display version information.

There are two options of this jar usage:
1. it can be started as interactive shell:

java -jar nxshell-5.0.8.jar

2. it can be started with the script name as a first parameter. Then it will just execute this script and exit.
Example:

java -jar nxshell-5.0.8.jar test.py

When NXShell is started, it tries to get server IP, login and password from Java properties. In interactive mode, user will
be asked for details, otherwise default values will be used.
Start as interactive shell, with IP and Login provided (password will be asked):

java -Dnetxms.server=127.0.0.1 -Dnetxms.login=admin -jar nxshell-5.0.8.jar

Properties
These properties should be set with JVM’s “-D” option. Please make sure that all “-D” options are before “-jar”.

Parameter Default Value
netxms.server 127.0.0.1
netxms.login admin
netxms.password netxms
netxms.encryptSession true

444 Chapter 44. Scripting

NetXMS Administrator Guide, Release 5.2.0

44.2.2 Scripting
For details on API please refer to javadoc at http://www.netxms.org/documentation/javadoc/latest/.
NXShell provide user with already connected and synchronized session to simplify scripting. Most required packages are
imported as well to minimize typing.

Global Variables

Variable Type Notes
session org.netxms.client.NXCSession
s org.netxms.client.NXCSession Alias for “session”

Helper Functions
Example
More examples can be found on a NetXMS wiki.

parentId = objects.GenericObject.SERVICEROOT # Infrastructure Services root

cd = NXCObjectCreationData(objects.GenericObject.OBJECT_CONTAINER, "Sample Container",

↪→ parentId);

containerId = session.createObject(cd) # createObject return ID of newly created␣

↪→object

print '"Sample Container" created, id=%d' % (containerId,)

flags = NXCObjectCreationData.CF_DISABLE_ICMP | \

NXCObjectCreationData.CF_DISABLE_NXCP | \

NXCObjectCreationData.CF_DISABLE_SNMP

for i in xrange(0, 5):

name = "Node %d" % (i + 1,)

cd = NXCObjectCreationData(objects.GenericObject.OBJECT_NODE, name, containerId);

cd.setCreationFlags(flags);

cd.setPrimaryName("0.0.0.0") # Create node without IP address

nodeId = session.createObject(cd)

print '"%s" created, id=%d' % (name, nodeId)

44.2. NXShell 445

http://www.netxms.org/documentation/javadoc/latest/
https://wiki.netxms.org/wiki/Using_nxshell_to_automate_bulk_operations

NetXMS Administrator Guide, Release 5.2.0

446 Chapter 44. Scripting

CHAPTER

FORTYFIVE

HIGH AVAILABILITY SETUP

45.1 Infrastructure
45.1.1 Production
IP/hostname: netxms-prod
PostgreSQL version: 14.3
PostgreSQL systemd service name: postgresql-14.service
PostgreSQL data directory: /u0fs1/pg-data/14
PostgreSQL port: 5432
NetXMS installation prefix: /opt/netxms
NetXMS system service names: netxmsd.service, nxagentd.service, nxreportd.service

45.1.2 DR
IP/hostname: netxms-dr
PostgreSQL version: 14.2
PostgreSQL systemd service name: postgresql-14.service
PostgreSQL data directory: /u0fs1/pg-data/14
PostgreSQL port: 5432
NetXMS installation prefix: /opt/netxms
NetXMS system service names: netxmsd.service, nxagentd.service, nxreportd.service

45.2 Switchover procedure
Switchover steps:

1. Confirm which node is currently active
1. The process “netxmsd” should be running only on active node (check with “ps” or “pgrep”)
2. Run “pg_replica_state” to get the current state of the database on this server. The active node will be marked

as “Sender / Primary”.
2. Stop netxmsd on active node:

1. Run “systemctl stop netxmsd”

447

NetXMS Administrator Guide, Release 5.2.0

2. Make sure it is stopped (with “ps” or “pgrep”)
3. Switch active database instance to standby (read-only) mode:

1. Run “sudo -u postgres touch /u0fs1/pg-data/14/standby.signal”
2. Run “systemctl restart postgresql-14”
3. Check logs (/u0fs1/pg-data/14/log/postgresql-*.log), it should contain records:

1. “starting PostgreSQL…”
2. “consistent recovery state reached at…”
3. “database system is ready to accept read only connections”

4. Promote another node as new PostgreSQL sender node:
1. On second node run sudo -u postgres psql -c ‘select pg_promote()’
2. Check log file for following records:

1. “…received promote request”
2. “selected new timeline ID: …”
3. “archive recovery complete”
4. “database system is ready to accept connections” (non-readonly!)

5. Start netxmsd on another node
The switchover procedure is identical when switching from PROD to DR and from DR to PROD.

45.3 Failover procedure
Follow the switchover procedure from item 4 onwards.

45.4 Failover recovery
Once a failed server (which was sender before the failover) is up and running, you need to switch it to replica mode.

1. Stop PostgreSQL (“systemctl stop postgresql-14”) on the failed node
2. Run “sudo -u postgres touch /u0fs1/pg-data/14/standby.signal” to switch it to replica mode
3. Unwind this DB instance to the state where it is in sync with the current sending server:

run sudo -u postgres /usr/pgsql-14/bin/pg_rewind –target-pgdata=/u0fs1/pg-data/14 –source-
server=”host=ACTIVE_DB user=postgres password=PASSWORD””.

ACTIVE_DB should point to the current sender instance (netxms-prod or netxms-dr).
4. Start PostgreSQL instance with “systemctl start postgresql-14”
5. Check logs and make sure that the database is started and it is in read only mode. Once recovery is completed, a

switchover procedure might be performed

448 Chapter 45. High Availability Setup

CHAPTER

FORTYSIX

APPENDIX

46.1 Cron format
Record has five fields, separated by spaces: minute, hour, day of month, month, and day of week. In DCI Collection
Schedule only, an optional the sixth field can be specified for resolution in seconds (this is a non-standard extension which
is not compatible with a regular cron format).
Allowed values and special characters for each field are:

Field Allowed values Allowed special characters
minute 0 - 59 * , - /
hour 0 - 23 * , - /
day of month 1 - 31 * , - / L
month 1 - 12 * , - /
day of week 0 - 7 (0 and 7 is Sunday) * , - / L
seconds (for DCI collection only, optional) 0 - 59 (0 - unlimited for %) * , - / %

A field may be an asterisk (*), which always stands for “any”.
Commas (,) are used to separate items of a list. For example, using 1,3,4 in the 5th field (day of week) means Mondays,
Wednesdays and Fridays.
Hyphens (-) define ranges. For example, using 6-8 in 4th field (month) means June, July and August.
Slashes (/) can be combined with ranges to specify step values. For example, */5 in the minutes field indicates every
5 minutes. If a step value does not evenly divide it’s range, there will be an inconsistent “short” period at the end of
time-unit.
L stands for “last”. When used in the day-of-week field, it allows to specify constructs such as “the last Friday” (“5L”) of
a given month. In the day-of-month field, it specifies the last day of the month.
The sixth field (but not others) supports additional stepping syntax with a percent sign (%), which means that the step in
seconds calculated in absolute seconds since the Unix epoch (00:00:00 UTC, 1st of January, 1970). It’s not recommended
to use seconds in custom schedules as your main data collection strategy though. Use seconds only if it is absolutely
necessary.

449

NetXMS Administrator Guide, Release 5.2.0

Fig. 1: DCI configuration custom schedule property page

46.1.1 Examples
Run five minutes after midnight, every day:

5 0 * * *

Run at 14:15 on the first day of every month:
15 14 1 * *

Run every 5 minutes:
*/5 * * * *

Run every minute on 10th second:
* * * * * 10

Run twice a minute (on seconds 0 and 45):
* * * * * */45

Run every 45 seconds from Monday till Friday:
* * * * 1-5 *%45

46.2 SMS Drivers
Deprecated since version 3.0.
SMS driver functionality replaces by notification channel functionality. More can be found inNotification channels section.

450 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

46.3 Agent configuration file (nxagentd.conf)

Parameter Description Default Value
Action Define action, which can be later executed by

management server. Parameters to the action can
be provided from the server. They can be ac-
cessed as $1, $2… variables. On Windows plat-
form system process execution API’s CreatePro-
cess() is used to run the command, it will search in
PATH, but the command should be with file exten-
sion, e.g. command.exe. For more information
please check Agent Actions.

No defaults

ActionShellExec Same as Action, but on Windows platform agent
will use shell to execute command instead of nor-
mal process creation. There is no difference be-
tween Action and ActionShellExec on UNIX plat-
forms. Parameters to the action can be provided
from the server. They can be accessed as $1, $2…
variables. For more information please check
Agent Actions.

No defaults

AppAgent The registered name of application with built in
subagent library that can be as subagent by agent.

No defaults

AutoStartUserAgent Enable (yes) or disable (no) automatic start of
User Support Application (Windows only). If en-
abled, Agent will check on it’s start, if User Sup-
port Application is running in each user session
and will start it if needed. For this to work, Agent
should be started under local SYSTEM user.

no

BackgroundLogWriter Enable (yes) or disable (no) log writer as separate
background thread. Has no effect if logging is
done through syslog or Windows Event Log.

no

CodePage Code page used by NetXMS agent. Has no ef-
fect onWindows or if agent was compiled without
iconv support.

Depends on your system, usually
ISO8859-1

ConfigIncludeDir Folder containing additional configuration files.
This parameter can only be specified in master
configuration file and will be ignored if found
in additional configuration files or configura-
tion policy.

See Additional configuration files
for information on default value.

ControlServers A list of management servers, which can execute
actions on agent and change agent’s config. Hosts
listed in this parameter also have read access to the
agent. Both IP addresses and DNS names can be
used. Multiple servers can be specified in one line,
separated by commas. If this parameter is used
more than once, servers listed in all occurrences
will have access to agent.

Empty list

CreateCrashDumps Enable (yes) or disable (no) creation of agent’s
crash dumps. Windows only

yes

continues on next page

46.3. Agent configuration file (nxagentd.conf) 451

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Parameter Description Default Value
DataDirectory Directory where additional agent files (log file

monitoring policy files, agent configuration pol-
icy files, user agent configuration, local agent
database, etc) will be stored. This parameter
can only be specified in master configuration
file and will be ignored if found in additional
configuration files or configuration policy.

UNIX-like systems: If
$NETXMS_HOME environment
variable is set: $NETXMS_HOME/
var/lib/netxms, otherwise
/var/lib/netxms. Windows:
'AppData'\nxagentd where
‘AppData’ is AppData folder for
the user account under which
NetXMS agent is started. If
agent runs under local SYSTEM
user account, data directory
is C:\Windows\System32\

config\systemprofile\

AppData\Local\nxagentd.
DailyLogFileSuffix Log file name suffix used when LogRotation-

Mode is set to 1 (daily), can contain strftime(3C)
macros

%Y%m%d

DebugLevel Set agent debug logging level (0 - 9). Value of
0 turns off debugging, 9 enables very detailed
logging. Can also be set with command line “-
D<level>” option.

0

DebugTags Set agent debug logging level (0 - 9) for exact log
tag or log tag mask. Value of 0 turns off de-
bugging, 9 enables very detailed logging. Con-
figuration should look like debugTag:logLevel
(like db.conn:6). To configure multiple log
tags, you should use multiple DebugTags param-
eters or write them coma separated (like proc.
spexec:8,tunnel.*:4,db.conn:6).

DefaultExecutionTimeout Timeout in milliseconds for external metric and
external command execution. This value will be
used for external metrics and external commands
if ExternalCommandTimeout or External-
MetricTimeout not set explicitly.

5000

DisableIPv4 Disables (yes) or enables(no) IPv4 support. no
DisableIPv6 Disables (yes) or enables(no) IPv6 support. no
DumpDirectory Directory for storing crash dumps (Windows

only).
C:\

EnableActions Enable (yes) or disable (no) action execution by
agent.

yes

EnableArbitraryComman-
dExecution

Not yet implemented. Enables server to run
any shell command on the agent without speci-
fying it as action in agent’s config file. Enabling
this adds System.Execute action (and also Sys-
tem.ExecuteInAllSessions on Windows).

no

continues on next page

452 Chapter 46. Appendix

http://www.unix.com/man-page/opensolaris/3c/strftime/

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Parameter Description Default Value
EnabledCiphers Controls what ciphers agent can use for connec-

tion encryption. A value for this parameter is a
cipher code. To enable more than one cipher, the
codes should be summed up.
Possible cipher codes:

• 1 - “AES-256”
• 2 - “BLOWFISH-256”
• 4 - “IDEA”
• 8 - “3DES”
• 16 - “AES-128”
• 32 - “BLOWFISH-128”

Example (enable AES-256 and IDEA):
EnabledCiphers = 5

63

EnableControlConnector Enables named pipe used by the agent to re-
ceive shutdown and delayed restart commands. A
command is sent by another instance of agent,
launched with -k or -K parameter. Used on Win-
dows during upgrade process.

yes

EnableProxy Enable (yes) or disable (no) agent proxy function-
ality.

no

EnableModbusProxy Enable (yes) or disable (no) Modbus-TCP proxy
functionality.

no

EnablePushConnector Enables named pipe / unix socket used by the
agent to receive data sent by nxapush command
line tool.

yes

EnableSNMPProxy Enable (yes) or disable (no) SNMP proxy func-
tionality.

no

EnableSNMPTrapProxy Enable (yes) or disable (no) SNMP Trap proxy
functionality.

no

EnableSSLTrace Enable (yes) or disable (no) additional debug mes-
sages from SSL library.

no

EnableSubagentAutoload Enable (yes) or disable (no) automatic loading of
subagent(s) depending on the platform on which
the agent is running.

yes

EnableSyslogProxy Enable (yes) or disable (no) Syslog proxy func-
tionality.

no

EnableTCPProxy Enable TCP proxy functionality that allows to for-
ward TCP connections inside the connection be-
tween NetXMS server and agent. Connection can
be established from Management Client when us-
ing URL and Local Command Object Tools. It’s
also possible to use this functionality from third
party applications, Java utility called TcpProx-
yApp that forwards local ports is provided as an
example.

no

EnableWatchdog Enable (yes) or disable (no) automatic agent
restart in case of unexpected shutdown.

no

EnableWebServiceProxy Enable (yes) or disable (no) web service data col-
lection proxy functionality.

no

continues on next page

46.3. Agent configuration file (nxagentd.conf) 453

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Parameter Description Default Value
ExecTimeout Deprecated, replaced by DefaultExecution-

Timeout

ExternalCommandTimeout External process execution timeout for external
commands (actions) in milliseconds. Value of
DefaultExecutionTimeout will be used if
this parameter is not set.

ExternalList Add list handled by external command. To
add multiple lists, you should use multi-
ple``ExternalList`` entries.

No defaults

ExternalMasterAgent ID that is checked when external subagent con-
nects to master agent. Should have same value as
ExternalSubagent parameter in external sub-
agent configuration file.

No defaults

ExternalMetric Adds metric handled by external command. To
add multiple metrics, you should use multiple Ex-
ternalMetric entries. On Windows platform
system process execution API’s CreateProcess() is
used to run the command, it will search in PATH,
but the command should be with file extension,
e.g. command.exe.

No defaults

ExternalMetricProvider Specifies external command and execution inter-
val after semicolon (:). External command re-
turns a number of metrics and their values. Met-
rics are cached by the agent and returned to server
per request. Command should return data in met-
ric=value format each pair in new line.

No defaults

ExternalMetricProvider-
Timeout

Timeout in milliseconds for external metric
provider and background-polled external table ex-
ecution

30000

ExternalMetricShellExec ExternalMetricShellExec has same meaning as
ExternalMetric with exception that agent will use
shell to execute specified command instead of sys-
tem process execution API. This difference pre-
sented only on Windows system, on other systems
ExternalMetric and ExternalMetricShellExec be-
haves identically.

No defaults

ExternalMetricTimeout Timeout in milliseconds for external metrics.
Value of DefaultExecutionTimeout will be
used if this parameter is not set.

ExternalParameter Deprecated, replaced by ExternalMetric
ExternalParameterProvider Deprecated, replaced by ExternalMet-

ricProvider

ExternalParametersProvider Deprecated, replaced by ExternalMet-

ricProvider

ExternalParameterProvider-
Timeout

Deprecated, replaced by ExternalMet-

ricProviderTimeout

ExternalParameter-
ShellExec

Deprecated, replaced by ExternalMetric-

ShellExec

continues on next page

454 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Parameter Description Default Value
ExternalSubagent ID of external subagent. Should be same as Ex-

ternalMasterAgent in master agent configura-
tion file.

No defaults

ExternalTable Adds table metric handled by external command.
To add multiple parameters, you should use multi-
ple ExternalTable entries. See Agent External
Metrics for more information.

No defaults

FileStore Directory to be used for storing files uploaded by
management server(s). It’s value is set to envi-
ronment variable NETXMS_FILE_STORE that
is available to all processed launched by agent.

/tmp on UNIX C:\ onWindows

FullCrashDumps Enable (yes) or disable (no) full crash dump gen-
eration. Windows only

no

GroupId GroupId under which NetXMS agent is started
(Unix only). See also UserId parameter.

No defaults

ListenAddress IP address that the agent should listen on. If
0.0.0.0 or * is specified as listen address, agent
will listen on all available IP addresses.

0.0.0.0

ListenPort TCP port to be used for incoming requests. 4700
LogFile Agent’s log file. To write log to syslog (or Event

Log on Windows), use {syslog} as file name.
/var/log/nxagentd on
UNIX syslog on Windows

LogHistorySize Defines howmany old log files should be kept after
log rotation.

4

LogRotationMode Define log rotation mode. Possible values are:
• 0 - No rotation;
• 1 - Daily rotation (log will be rotated every
midnight);

• 2 - Rotation by size (log will be rotated
when it’s size will exceed value defined by
MaxLogSize parameter).

2

LogUnresolvedSymbols If set to yes, all dynamically resolved symbols,
which failed to be resolved, will be logged.

no

LongRunningQueryThresh-
old

Expressed in milliseconds. If a query to agent’s
local database or DBQuery subagent query takes
longer then this time, the query will be logged to
agent log file.

250

MasterServers List of management servers, which have full ac-
cess to agent. Hosts listed in this group can up-
load files to agent and initiate agent upgrade, as
well as perform any task allowed for hosts listed
in Servers and ControlServers. Both IP addresses
and DNS names can be used. Multiple servers
can be specified in one line, separated by commas.
If this parameter is used more than once, servers
listed in all occurrences will have access to agent.

Empty list

MaxLogSize Maximum log size, in bytes. When log file reaches
this limit, log rotation occurs. Use 0 to disable
log rotation. This parameter supports (K, M, G, T
suffixes).

16M

continues on next page

46.3. Agent configuration file (nxagentd.conf) 455

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Parameter Description Default Value
MaxSessions Maximum number of simultaneous communica-

tion sessions. Possible value can range from 2 to
1024.

32

OfflineDataExpirationTime Applicable only if Agent Cache Mode is on. De-
fines the duration (in days) for how collected data
will be stored in agent’s database if there is no con-
nection to NetXMS server.

10

PlatformSuffix String to be added as suffix to the value of
System.PlatformName parameter.

Empty string

RequireAuthentication If set to yes, a host connected to an agent has to
provide correct shared secret before issuing any
command.

no

RequireEncryption If set to yes, a host connected to an agent will be
forced to use encryption, and if encryption is not
supported by a remote host, the connection will
be dropped. If an agent was compiled without en-
cryption support, this parameter has no effect.

no

ServerConnection IP address or host name of NetXMS server for
tunnel agent connection. Several such parameters
can be present, in this case agent will establish tun-
nel connection to more then one server.

No defaults

[ServerConnection] Section with parameters for for tunnel agent con-
nection. Several such sections can be present. See
Agent to server connection for more information.

No defaults

Servers A list of management servers, which have read ac-
cess to this agent. Both IP addresses and DNS
names can be used. Multiple servers can be spec-
ified in one line, separated by commas. If this pa-
rameter is used more than once, servers listed in
all occurrences will have access to agent.

Empty list

SessionIdleTimeout Communication session idle timeout in seconds.
If an agent will not receive any command from
peer within the specified timeout, session will be
closed.

60

SharedSecret Agent’s shared secret used for remote peer authen-
tication. If RequireAuthentication set to no,
this parameter has no effect.

admin

EncryptedSharedSecret Agent’s shared secret used for remote peer au-
thentication, encrypted using “nxencpasswd -a”.
If RequireAuthentication set to no, this pa-
rameter has no effect.

SNMPProxyThreadPool-
Size

SNMP proxy thread pool size 128

SNMPTimeout Timeout in milliseconds for SNMP requests sent
by agent

3000

SNMPTrapListenAddress Interface address which should be used by server
to listen for incoming SNMP trap connections.
Use value 0.0.0.0 or * to use all available inter-
faces.

*

SNMPTrapPort Port that will be used to listen SNMP traps 162
continues on next page

456 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Table 1 – continued from previous page
Parameter Description Default Value
StartupDelay Number of seconds that agent should wait on

startup before start servicing requests. This pa-
rameter can be used to prevent false reports about
missing processes or failed services just after
monitored system startup.

0

SubAgent Subagent to load. To load multiple subagents, you
should use multiple SubAgent parameters. Sub-
agents will be loaded in the same order as they
appear in configuration file.

No defaults

SyslogListenPort Listening port number for syslog proxy function-
ality.

514

SystemName If tunnel agent connection is used, the system ap-
pears in Agent Tunnel Manager under that name.

localhost is used by default

TrustedRootCertificate Path to file or folder with root certificate used to
verify certificate chain in tunnel connection.

SeeAgent to server connection for
information on default locations

TunnelKeepaliveInterval Interval (in seconds) between keepalive packets
over tunnel agent connection.

30

UserAgentExecutable Name of User Support Application executable
used by AutoStartUserAgent and UserAgent-
Watchdog parameters.

nxuseragent.exe

UserAgentWatchdog Enable (yes) or disable (no) automatic restart of
User Support Application (Windows only). If
enabled, Agent will check once per minute, if
User Support Application is running in each user
session and will start it if needed. For this to
work, Agent should be started under local SYS-
TEM user.

no

UserId Username under which NetXMS agent is started
(Unix only). See also GroupId parameter.

No defaults

VerifyServerCertificate Perform server certificate chain verification when
establishing tunnel connection. SeeAgent to server
connection for more information.

no

WaitForProcess If specified, an agent will pause initialization until
given process starts.

No defaults

WriteLogAsJson Enable (yes) or disable (no) writing log file in
JSON format.

no

ZoneUIN Allows to set agent’s zone explicitly. This can be
useful when agent forwards syslog or SNMP traps
of devices, that belong to a particular zone. Agent
will include zone UIN along with the trap message
that will allow correct matching of traps.

No defaults

Note

All boolean parameters understand “Yes/No”, “On/Off” and “True/False” values.

46.3. Agent configuration file (nxagentd.conf) 457

NetXMS Administrator Guide, Release 5.2.0

46.4 Server configuration file (netxmsd.conf)

Parameter Description Default Value
AuditLogKey Key for audit log entry signing using HMAC. Empty string
BackgroundLogWriter Enables separate thread that writes log in blocks. no
CodePage Code page used by NetXMS server. Has no effect on

Windows or if server was compiled without iconv sup-
port.

Depends on your system, usually
ISO8859-1

CreateCrashDumps Control creation of server’s crash dumps. Possible val-
ues: yes or no. Has effect only onWindows platforms.

no

CRL Certificate revocation list - path to local file or
http/https url. Supports and autodetects PEM and
DER formats. Multiple such entries can be present
in the configuration file.

No default value

DailyLogFileSuffix Log file name suffix used when LogRotationMode
is set to 1 (daily), can contain strftime(3C) macros

%Y%m%d

DataDirectory Directory where server looks for compiled MIB files,
keep server encryption key, etc.

On UNIX-like platforms:
'prefix'/var/lib/

netxms. ‘prefix’ is set dur-
ing build configuration with
--prefix='prefix' pa-
rameter. If that parameter
was not specified during build,
/usr/local is used. If in-
stalled from .deb packages:
/var/lib/netxms. On
Windows: 'Installation

folder'\netxms\var where
‘Installation folder’ is the folder
to which NetXMS server is
installed.

DBCacheConfigura-
tionTables

Cache configuration tables to in-memory sqlite
database to speed up server startup

yes

DBDriver Database driver to be used. No default value
DBDriverOptions Additional driver-specific parameters. Empty string
DBDrvParams Deprecated, replaced by DBDriverOptions Empty string
DBLogin Database user name. netxms
DBName Database name (not used by ODBC driver). netxms_db
DBPassword Database user’s password. When using INI configu-

ration file format, remember to enclose password in
double qoutes (“password”) if it contains # character.

Empty password

DBEncryptedPassword Hashed password, as produced by “nxencpass” none
DBSchema Schema name not set
DBServer Database server (ODBC source name for ODBC

driver).
localhost

DBSessionSetup-
SQLScript

Path to a plain text file containing a list of SQL
commands which will be executed on every new
database connection, including initial connection on
server startup.

Empty string

DebugLevel Set server debug logging level (0 - 9). Value of 0 turns
off debugging, 9 enables very detailed logging. Can
also be set with command line -D <level> option.

0

continues on next page

458 Chapter 46. Appendix

http://en.wikipedia.org/wiki/HMAC
http://www.unix.com/man-page/opensolaris/3c/strftime/

NetXMS Administrator Guide, Release 5.2.0

Table 2 – continued from previous page
Parameter Description Default Value
DebugTags Set server debug logging level (0 - 9) for exact log

tag or log tag mask. Value of 0 turns off debug-
ging, 9 enables very detailed logging. Configuration
should look like debugTag:logLevel (like agent.
tunnel.*:4). To configure multiple log tags, you
should use multiple DebugTags parameters or write
them coma separated (like crypto.*:8,agent.

tunnel.*:4).

Empty string

DefaultThreadStackSize Advanced feature, please contact support prior to
changing. This parameter supports (K, M, G, T suf-
fixes).

1M

DumpDirectory Directory for storing crash dumps. “/” or “C:"
FullCrashDumps Write full crash dump instead of minidump (Windows

only)
no

InternalCACertificate Path to file of server CA certificate. This certificate is
used to issue agent certificates. InternalCACertificate
parameter also implies that this certificate is trusted by
the server when checking agent certificate validity.

Empty string

InternalCACertifi-
cateKey

Private key of server CA certificate. Can be omitted
if key is included in server certificate file.

Empty string

InternalCACertifi-
catePassword

Password of server CA certificate. Can be omitted if
certificate does not use password.

Empty string

LibraryDirectory Defines location of library folder where drivers (ndd
files) are stored. It’s highly recommended not to use
this parameter.

Empty string

ListenAddress Interface address which should be used by server to
listen for incoming connections. Use value 0.0.0.0 or
* to use all available interfaces.

0.0.0.0

LogFile Server’s log file. To write log to syslog (or Event Log
on Windows), use {syslog} as file name.

{syslog}

LogHistorySize Number rotated files to keep, older will be discarded 4
LogRotationMode Define log rotation mode. Possible values are:

• 0 - No rotation;
• 1 - Daily rotation (log will be rotated every mid-
night);

• 2 - Rotation by size (log will be rotated when it’s
size will exceed value defined by MaxLogSize
parameter).

2

MaxClientMessageSize Advanced feature, please contact support prior to
changing. This parameter supports (K, M, G, T suf-
fixes).

4M

MaxClientSessions Maximum number of client sessions. 256
MaxLogSize Maximum log file size in bytes, used only if LogRo-

tationMode is set to 2. This parameter supports (K,
M, G, T suffixes).

16M

Module Additional server module to be loaded at server
startup. You can use more then one Module parame-
ters to load multiple modules.

No default value

continues on next page

46.4. Server configuration file (netxmsd.conf) 459

NetXMS Administrator Guide, Release 5.2.0

Table 2 – continued from previous page
Parameter Description Default Value
PeerNode IP address of peer node in high availability setup. If

there is lock in the database with this address indi-
cated, server process will communicate to agent and
server on that address to ensure the server is not run-
ning prior to removing the database lock.

No default value

PerfDataStorageDriver Name of fanout driver used to send collected data to
an additional database. Multiple such parameters can
be specified in the configuration file to specifymultiple
drivers. See Fanout drivers for more information.

Empty string

ProcessAffinityMask Sets a processor affinity mask for the netxmsd process
(Windows only). A process affinity mask is a bit vec-
tor in which each bit represents a logical processor on
which the threads of the process are allowed to run.
See this MSDN article for more details.

0xFFFFFFFF

ServerCertificate Path to file of server certificate for agent tunnel con-
nections. This certificate is used to issue agent certifi-
cates. ServerCertificate parameter also implies that
this certificate is trusted by the server when checking
agent certificate validity.

Empty string

ServerCertificateKey Private key of server certificate. Can be omitted if key
is included in server certificate file.

Empty string

ServerCertificatePass-
word

Password of server certificate. Can be omitted if cer-
tificate does not use password.

Empty string

StartupSQLScript Path to a plain text file containing a list of SQL com-
mands which will be executed on server startup.

Empty string

TrustedCertificate Certificate issued by certificate authority or self-
signed CA certificate. If certificate chain for server
certificate is longer, all upper level certificates should
be added to configuration file by adding multiple
TrustedCertificate entries.

Empty string

TunnelCertificate Path to file of server certificate for agent tunnel con-
nections.

Empty string

TunnelCertificateKey Private key of server tunnel certificate. Can be omitted
if key is included in server certificate file.

Empty string

TunnelCertificatePass-
word

Password of server tunnel certificate. Can be omitted
if certificate does not use password.

Empty string

WriteLogAsJson Write server log in JSON format. no

Note

All boolean parameters accept “Yes/No”, “On/Off” and “True/False” values.

46.5 Server configuration parameters
These parameters can be changed in Configuration ‣ Server Configuration

460 Chapter 46. Appendix

http://msdn.microsoft.com/en-us/library/windows/desktop/ms686223%28v=vs.85%29.aspx

NetXMS Administrator Guide, Release 5.2.0

Parameter Description Default Value Restart
Re-
quired

ActionExecution-
Log.RetentionTime

Retention time in days for the records in server action execu-
tion log. All records older then specified will be deleted by
housekeeping process.

90 No

Agent.CommandTimeoutTimeout in milliseconds for commands sent to agent. If agent
did not respond to command within this time, command con-
sidered as failed.

4000 Yes

Agent.DefaultCacheModeDefault agent cache mode Off Yes
Agent.DefaultEncryptionPolicySet the default encryption policy for communications with

agents: 0 - encryption disabled, 1 - allowed, 2 - preferred,
3 - required.

Allowed Yes

Agent.DefaultAgentProtocolCompressionModeDefault agent protocol compression mode Enabled No
Agent.EnableRegistrationEnable/disable agents self-registration. true No
Agent.RestartWaitTime Period of time (in seconds) after agent restart for which server

will not perform status, congiration, and other polls on the
agent.

0 No

Agent.Upgrade.NumberOfThreadsThe number of threads used to perform agent upgrades (i.e.
maximum number of parallel upgrades).

10 No

Agent.Upgrade.WaitTimeMaximumwait time in seconds for agent restart after upgrade.
If agent cannot be contacted after this time period, upgrade
process is considered as failed.

600 No

AgentPol-
icy.MaxFileSize

Maximum file size for exported files in agent policies. Files
larger then this size will not be included when exporting con-
figuration to .xml.

16777215 Yes

AgentTun-
nels.Certificates.ReissueInterval

Interval in days for newly issued agent certificates. 30 Yes

AgentTun-
nels.Certificates.ValidityPeriod

Validity period in days for newly issued agent certificates. 90 Yes

AgentTun-
nels.ListenPort

TCP port number to listen on for incoming agent tunnel con-
nections

4703 Yes

AgentTun-
nels.NewNodesContainer

Name of the container where nodes that were created auto-
matically for unbound tunnels will be placed. If several con-
tainers with that name are present, it is not guaranteed, which
container will be selected. If empty, such nodes will be cre-
ated in infrastructure services root.

No

AgentTun-
nels.TLS.MinVersion

Minimal version of TLS protocol used on agent tunnel con-
nection.

1.2 No

AgentTun-
nels.UnboundTunnelTimeout

Unbound agent tunnels inactivity timeout. If tunnel has
not been bound or closed after that timeout, action defined
by AgentTunnels.UnboundTunnelTimeoutAction parameter
will be taken.

3600 No

AgentTun-
nels.UnboundTunnelTimeoutAction

Action to be taken when unbound agent tunnel timeout ex-
pires.

Reset Tunnel No

Alarms.DeleteAlarmsOfDeletedObjectEnable/disable automatic alarm removal of an object when it
is deleted.

true No

Alarms.EnableTimedAckEnable/disable ability to acknowledge an alarm for a specific
time.

true Yes

Alarm.HistoryRetentionTimeNumber of days the server keeps alarm history in the
database.

180 No

continues on next page

46.5. Server configuration parameters 461

NetXMS Administrator Guide, Release 5.2.0

Table 3 – continued from previous page
Parameter Description Default Value Restart

Re-
quired

Alarms.IgnoreHelpdeskStateIf set, alarm helpdesk state will be ignored when resolving or
terminating.

false No

Alarms.ResolveExpirationTimeExpiration time (in seconds) for resolved alarms. If set to
non-zero, resolved and untouched alarms will be terminated
automatically after given timeout.

0 No

Alarm.StrictStatusFlow This parameter describes if alarm status flow should be strict
(alarm can be terminated only after it was resolved).

false No

Alarms.SummaryEmail.EnableEnable/disable alarm summary emails. Summary emails will
be sent via notification channel specified in DefaultNotifica-
tionChannel.SMTP.Html server configuration parameter.

false No

Alarms.SummaryEmail.RecipientsA semicolon separated list of e-mail addresses to which the
alarm summary will be sent.

No

Alarms.SummaryEmail.ScheduleSchedule for sending alarm summary e-mails in cron format.
See Cron format for supported cron format options.

0 0 * * * No

As-
setChangeLog.RetentionTime

Retention time in days for the records in asset change log. All
records older then specified will be deleted by housekeeping
process.

90 No

Audit-
Log.External.Facility

Syslog facility to be used in audit log records sent to external
server.

13 Yes

Audit-
Log.External.Port

UDP port of external syslog server to send audit records to. 514 Yes

Audit-
Log.External.Server

External syslog server to send audit records to. If set to
‘’none’’, external audit logging is disabled.

none Yes

Audit-
Log.External.Severity

Syslog severity to be used in audit log records sent to external
server.

5 Yes

Audit-
Log.External.Tag

Syslog tag to be used in audit log records sent to external
server.

netxmsd-audit Yes

Audit-
Log.External.UseUTF8

Changes audit log encoding to UTF-8 false No

Audit-
Log.RetentionTime

Retention time in days for the records in audit log. All records
older than specified will be deleted by housekeeping process.

90 No

Beacon.Hosts Comma-separated list of hosts to be used as beacons for
checking NetXMS server network connectivity. Either DNS
names or IP addresses can be used. This list is pinged by
NetXMS server and if none of the hosts have responded,
server considers that connection with network is lost and gen-
erates specific event.

Yes

Bea-
con.PollingInterval

Interval in milliseconds between beacon hosts polls. 1000 Yes

Beacon.Timeout Timeout in milliseconds to consider beacon host unreachable. 1000 Yes
BlockInactiveUserAc-
counts

Inactivity time after which user account will be blocked (0 to
disable blocking).

0 No

BusinessSer-
vices.Check.AutobindClassFilter

Class filter for automatic creation of business service checks. AccessPoint,
Cluster, In-
terface, Net-
workService,
Node

No

continues on next page

462 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Table 3 – continued from previous page
Parameter Description Default Value Restart

Re-
quired

BusinessSer-
vices.Check.Threshold.DataCollection

Default threshold for business DCI service checks Warning No

BusinessSer-
vices.Check.Threshold.Objects

Defaule threshold for business service object checks Warning No

BusinessSer-
vices.History.RetentionTime

Retention time for business service historical data 90 No

CAS.AllowedProxies Comma-separated list of allowed CAS (Central Authentica-
tion Service) proxies.

No

CAS.Host CAS server DNS name or IP address. localhost No
CAS.Port CAS server TCP port number. 8443 No
CAS.Service Service to validate (usually NetXMS web UI URL). https://127.0.0.

1/nxmc
No

CAS.TrustedCACert File system path to CAS server trusted CA certificate. No
CAS.ValidateURL URL for service validation on CAS server. /cas/serviceValidate No
CertificateAction-
Log.RetentionTime

Retention time in days for certificate action log. All records
older then specified will be delete by housekeeping process.

370 No

Client.AlarmList.DisplayLimitMaximum alarm count that will be displayed on Alarm
Browser page. Alarms that exceed this count will not be
shown.

4096 No

Client.DashboardDataExport.EnableInterpolationEnable/disable data interpolation in dashboard data export. true Yes
Client.DefaultConsoleDateFormatDefault format to display date for GUI. dd.MM.yyyy No
Client.DefaultConsoleShortTimeFormatDefault short time display format for GUI. HH:mm No
Client.DefaultConsoleTimeFormatDefault long time display format for GUI. HH:mm:ss No
Client.KeepAliveInterval Interval in seconds between sending keep alive packets to con-

nected clients.
60 Yes

Client.ListenerPort The server port for incoming client connections (such as man-
agement client).

4701 Yes

Client.MinVersion The minimum client version allowed to connection to this
server.

No

Client.MinViewRefreshIntervalMinimal interval between view refresh in milliseconds (hint
for client).

300 No

Client.ObjectBrowser.AutoApplyFilterEnable/disable object browser’’s filter applying as user types
(if disabled, user has to press ENTER to apply filter).

true No

Client.ObjectBrowser.FilterDelayDelay (in milliseconds) between typing in object browser’’s
filter and applying it to object tree.

300 No

Client.ObjectBrowser.MinFilterStringLengthMinimal length of filter string in object browser required for
automatic apply.

1 No

Client.TileServerURL The base URL for the tile server used to draw maps. http://tile.
netxms.org/osm/

No

DataCollec-
tion.ApplyDCIFromTemplateToDisabledDCI

Enable applying all DCIs from a template to the node, includ-
ing disabled ones.

true Yes

DataCollec-
tion.DefaultDCIPollingInterval

Default polling interval for newly created DCI (in seconds). 60 No

DataCollec-
tion.DefaultDCIRetentionTime

Default retention time for newly created DCI (in days). 30 No

DataCollec-
tion.InstancePollingInterval

Instance polling interval (in seconds). 600 Yes

continues on next page

46.5. Server configuration parameters 463

https://127.0.0.1/nxmc
https://127.0.0.1/nxmc
http://tile.netxms.org/osm/
http://tile.netxms.org/osm/

NetXMS Administrator Guide, Release 5.2.0

Table 3 – continued from previous page
Parameter Description Default Value Restart

Re-
quired

DataCollec-
tion.InstanceRetentionTime

Default retention time (in days) for missing DCI instances. 7 No

DataCollec-
tion.OfflineDataRelevanceTime

Time period in seconds within which received offline data still
relevant for threshold validation

86400 Yes

DataCollec-
tion.OnDCIDelete.TerminateRelatedAlarms

Enable/disable automatic termination of related alarms when
data collection item is deleted.

true No

DataCollec-
tion.ScriptErrorReportInterval

Minimal interval (seconds) between reporting errors in data
collection related script.

86400 No

DataCollec-
tion.StartupDelay

Enable/disable randomized data collection delays on server
startup for more even server load distribution.

false Yes

DataCollec-
tion.TemplateRemovalGracePeriod

Setting up grace period (in days) for removing templates from
target.

0 No

DataCollec-
tion.ThresholdRepeatInterval

System-wide interval in seconds for resending threshold vio-
lation events. Value of 0 disables event resending.

0 Yes

DBConnection-
Pool.BaseSize

Number of connections to the database created on the server
startup.

10 Yes

DBConnection-
Pool.CooldownTime

Inactivity time (in seconds) after which database connection
will be closed.

300 Yes

DBConnection-
Pool.MaxLifetime

Maximum lifetime (in seconds) for a database connection. 14400 Yes

DBConnection-
Pool.MaxSize

Maximum number of connections in the connection pool. 30 Yes

DB-
Writer.BackgroundWorkers

Number of background workers for DCI data writer. 1 Yes

DB-
Writer.DataQueues

Number of queues for DCI data writer. 1 Yes

DB-
Writer.HouseKeeperInterlock

Controls if server should block background write of collected
performance data while housekeeper deletes expired records.
Auto enables this feature is server is running on MsSQL
database.

Auto No

DB-
Writer.InsertParallelismDegree

Degree of parallelism for INSERT statements executed by
DCI data writer (only valid for TimescaleDB).

1 Yes

DB-
Writer.MaxQueueSize

Maximum size for DCI data writer queue (0 to disable size
limit). If writer queue size grows above that threshold any new
data will be dropped until queue size drops below threshold
again.

0 No

DB-
Writer.MaxRecordsPerStatement

Maximum number of records per one SQL statement for de-
layed database writes

100 Yes

DB-
Writer.MaxRecordsPerTransaction

Maximum number of records per one transaction for delayed
database writes

1000 Yes

DB-
Writer.RawDataFlushInterval

Interval between writes of accumulates war DCI data to
database.

30 Yes

DB-
Writer.UpdateParallelismDegree

Degree of parallelism for UPDATE statements executed by
raw DCI data writer.

1 Yes

DefaultNotification-
Channel.SMTP.Html

Default notification channel for SMTP HTML formatted
messages.

SMTP-HTML No

DefaultNotification-
Channel.SMTP.Text

Default notification channel for SMTP text formatted mes-
sages.

SMTP-Text No

continues on next page

464 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Table 3 – continued from previous page
Parameter Description Default Value Restart

Re-
quired

EnableISCListener Enable/disable Inter-Server Communications Listener. false Yes
Events.Correlation.TopologyBasedEnable/disable topology based event correlation. true No
Events.DeleteEventsOfDeletedObjectEnable/disable automatic event removal of an object when it

is deleted.
true No

Events.LogRetentionTimeRetention time in days for the records in event log. All records
older than specified will be deleted by housekeeping process.

90 No

Events.Processor.PoolSizeNumber of threads for parallel event processing. 1 Yes
Events.Processor.QueueSelectorQueue selector for parallel event processing. In parallel pro-

cessing server ensures that events having same queue selector
will be processed in one queue.

%z Yes

Events.ReceiveForwardedEventsEnable/disable reception of events forwarded by another
NetXMS server. Please note that for external event reception
ISC listener should be enabled as well.

false No

EventStorm.Duration Time period for events per second to be above threshold that
defines event storm condition.

15 Yes

EventStorm.EnableDetectionEnable/disable event storm detection. false Yes
EventStorm.EventsPerSecondThreshold for number of events per second that defines event

storm condition.
1000 Yes

Geoloca-
tion.History.RetentionTime

Retention time in days for object’s geolocation history. All
records older then specified will be deleted by housekeeping
process.

90 No

HelpDeskLink Helpdesk driver name. If ‘’none’’, then no helpdesk driver is
in use.

none Yes

House-
keeper.DisableCollectedDataCleanup

Disable automatic cleanup of collected DCI data during
housekeeper run.

false No

House-
keeper.StartTime

Time when housekeeper starts. Housekeeper deletes expired
log recored and DCI data as well as cleans removed objects.

02:00 Yes

House-
keeper.Throttle.HighWatermark

If database writer queue length (in queue elements) exceeds
this number, housekeeper process is paused.

250000 No

House-
keeper.Throttle.LowWatermark

If housekeeper got paused due to DB writer queue reaching
Housekeeper.Throttle.HighWatermark, it will resume opera-
tion when DB writer queue becomes lower then this setting.

50000 No

ICMP.CollectPollStatisticsCollect ICMP poll statistics for all nodes by default. See ICMP
ping chapter for information.

1 No

ICMP.PingSize Size of ICMP packets (in bytes, excluding IP header size)
used for status polls.

46 Yes

ICMP.PingTimeout Timeout for ICMP ping used for status polls (inmilliseconds). 1500 Yes
ICMP.PollingInterval Interval between ICMP statistic collection polls (in seconds) 60 No
ICMP.StatisticPeriod Time period for collecting ICMP statistics (in number of

polls).
60 No

Jira.IssueType Jira issue type Task No
Jira.Login Jira login netxms No
Jira.Password Jira password No
Jira.ProjectCode Jira project code NETXMS No
Jira.ProjectComponent Jira project component No
Jira.ResolvedStatus Comma separated list of issue status codes indicating that is-

sue is resolved.
No

Jira.ServerURL The URL of Jira server http://localhost No
continues on next page

46.5. Server configuration parameters 465

http://localhost

NetXMS Administrator Guide, Release 5.2.0

Table 3 – continued from previous page
Parameter Description Default Value Restart

Re-
quired

Jira.Webhook.Path Path part of Jira webhook URL (must start with /). /jira-webhook Yes
Jira.Webhook.Port Jira webhook listener port (0 to disable webhook). 8008 Yes
JobRetryCount Maximum number of job execution retries. 5 No
LDAP.ConnectionString The LdapConnectionString configuration parameter may be

a comma- or whitespace-separated list of URIs containing
only the schema, the host, and the port fields. Apart from
ldap, other (non-standard) recognized values of the schema
field are ldaps (LDAP over TLS), ldapi (LDAP over IPC),
and cldap (connectionless LDAP). If other fields are present,
the behavior is undefined. Format: schema://host:port. For
more information refer to Integration with LDAP chapter.

ldap://localhost:
389

No

LDAP.GroupClass Specifies which object class represents group objects. If found
entry will not be of a user or group class, it will be ignored.

No

LDAP.GroupUniqueId Unique identifier for LDAP group object. If not set, LDAP
users are identified by DN.

No

LDAP.Mapping.DescriptionThe name of an attribute whose value will be used as a user’s
description.

No

LDAP.Mapping.Email The name of an attribute whose value will be used as a user’s
email.

displayName No

LDAP.Mapping.FullNameThe name of an attribute whose value will be used as a user’s
full name.

displayName No

LDAP.Mapping.GroupNameThe name of an attribute whose value will be used as group’s
login name

No

LDAP.Mapping.PhoneNumberThe name of an attribute whose value will be used as group’s
phone number

No

LDAP.Mapping.UserNameThe name of an attribute whose value will be used as a user’s
login name.

displayName No

LDAP.NewUserAuthMethodAuthentication method to be set for user object created by
LDAP synchronization process.

LDAP password No

LDAP.PageSize The maximum amount of records that can be returned in one
search page.

1000 No

LDAP.SearchBase The DN of the entry at which to start the search. No
LDAP.SearchFilter A string representation of the filter to apply in the search. No
LDAP.SyncInterval The synchronization interval (in minutes) between the

NetXMS server and the LDAP server. If the parameter is
set to 0, no synchronization will take place.

0 No

LDAP.SyncUser User login for LDAP synchronization No
LDAP.SyncUserPasswordUser password for LDAP synchronization No
LDAP.UserClass The object class which represents user objects. If the found

entry is not of user or group class, it will be ignored.
No

LDAP.UserDeleteActionThis parameter specifies what should be done while synchro-
nization with deleted from LDAP user/group. 0 - if user
should be just deleted from NetXMS DB. 1 - if it should be
disabled. If it is chosen to disable user, then on LDAP sync
user will be disabled and it’s description will be change on
“LDAP entry was deleted.” Afterwards this user/group can
be detached from LDAP and enabled if it is required or just
deleted manually.

Disable user No

continues on next page

466 Chapter 46. Appendix

ldap://localhost:389
ldap://localhost:389

NetXMS Administrator Guide, Release 5.2.0

Table 3 – continued from previous page
Parameter Description Default Value Restart

Re-
quired

LDAP.UserUniqueId Unique identifier for LDAP user object. If not set, LDAP
users are identified by DN.

No

LongRunningQuery-
Threshold

Threshold in milliseconds to report long running SQL queries
(0 to disable). Queries are logged to NetXMS server log file
on debug level 3.

0 Yes

MaintenanceJour-
nal.RetentionTime

Retention time in days for maintenance jourcal entries. All
records older then specified will be deleted by housekeeping
process.

1826 No

MobileDeviceListen-
erPort

Listener port for connections from NetXMS mobile agent. 4747 Yes

NetworkDe-
viceDrivers.BlackList

Comma separated list of blacklisted network device drivers. Yes

NetworkDiscov-
ery.ActiveDiscovery.BlockSize

Size of address block to which ICMP ping requests are sent
simultaneously during active discovery.

1024 No

NetworkDiscov-
ery.ActiveDiscovery.EnableSNMPProbing

Enable/disable SNMP probing during active network discov-
ery. If enabled, server will send SNMP requests to detect
devices that restpond to SNMP, but not to ICMP pings.

true No

NetworkDiscov-
ery.ActiveDiscovery.EnableTCPProbing

Enable/disable TCP probing during active network discovery.
If enabled, server will try to establish TCP connection to list
of well-known ports to detect devices that are not respond-
ing to ICMP pings. This setting is changed by Network
Discovery Configuration GUI

false No

NetworkDiscov-
ery.ActiveDiscovery.InterBlockDelay

Pause in milliseconds between scanning of blocks during ac-
tive discovery. Together with BlockSize this allows to slow
down active discovery if network equipment treats large num-
ber of ICMP requests as flood.

0 No

NetworkDiscov-
ery.ActiveDiscovery.Interval

Interval in seconds between active network discovery polls.
This setting is changed by Network Discovery Configu-
ration GUI

7200 No

NetworkDiscov-
ery.ActiveDiscovery.Schedule

Active network discovery poll schedule in cron format. This
setting is changed by Network Discovery Configuration
GUI

No

NetworkDiscov-
ery.DisableProtocolProbe.Agent

Disable probing discovered addresses for NetXMS agent. false No

NetworkDiscov-
ery.DisableProtocolProbe.EtherNetIP

Disable probing discovered addresses for Ethernet/IP support. false No

NetworkDiscov-
ery.DisableProtocolProbe.SNMP.V1

Disable SNMP version 1 when probing discovered addresses
for SNMP support.

false No

NetworkDiscov-
ery.DisableProtocolProbe.SNMP.V2

Disable SNMP version 2 when probing discovered addresses
for SNMP support.

false No

NetworkDiscov-
ery.DisableProtocolProbe.SNMP.V3

Disable SNMP version 3 when probing discovered addresses
for SNMP support.

false No

NetworkDiscov-
ery.DisableProtocolProbe.SSH

Disable probing discovered addresses for SSH support. false No

NetworkDiscov-
ery.EnableParallelProcessing

Enable/disable parallel processing of discovered addresses. false No

NetworkDiscov-
ery.Filter.Flags

Discovery filter settings. This setting is changed by Net-
work Discovery Configuration GUI

0 No

continues on next page

46.5. Server configuration parameters 467

NetXMS Administrator Guide, Release 5.2.0

Table 3 – continued from previous page
Parameter Description Default Value Restart

Re-
quired

NetworkDiscov-
ery.Filter.Script

Name of discovery filter script from script library. This set-
ting is changed by NetworkDiscovery ConfigurationGUI

none No

NetworkDiscov-
ery.MergeDuplicateNodes

Enable/disable merging of duplicate nodes (that may be cre-
ated due to parallel processing of discovered addresses).

false No

NetworkDiscov-
ery.PassiveDiscovery.Interval

Interval in seconds between passive network discovery polls.
This setting is changed by Network Discovery Configura-
tion GUI

900 No

NetworkDiscov-
ery.Type

Defines enabled modes of network discovery. This setting is
changed by Network Discovery Configuration GUI

Disabled No

NetworkDiscov-
ery.UseDNSNameForDiscoveredNodes

Enable/disable the use of DNS name instead of IP address as
primary name for newly discovered nodes. If enabled, server
will do back resolve of IP address, and then resolve obtained
name back to IP address. Only if this IP address will match
the original one, DNS name will be used.

false No

NetworkDiscov-
ery.UseFQDNForNodeNames

Enable/disable the use of fully qualified domain names as pri-
mary names for newly discovered nodes.

true Yes

NetworkDiscov-
ery.UseSNMPTraps

This parameter defines if trap information should be used for
new node discovery.

false Yes

NetworkDiscov-
ery.UseSyslog

Enable/disable use of syslog messages for new node discov-
ery.

false Yes

NotificationChan-
nels.MaxRetryCount

Maximum count of retries to send a message for all notifica-
tion channels.

3 No

Notification-
Log.RetentionTime

Retention time in days for the records in notification log. All
records older then specified will be deleted by housekeeper
process.

90 No

NXSL.EnableContainerFunctionsEnable/disable server-side NSXL functions for containers
(such as CreateContainer, BindObject, etc.).

true No

NXSL.EnableFileIOFunctionsEnable/disable server-side NXSL functions for file I/O (such
as OpenFile, DeleteFile, etc.).

false No

Ob-
jects.AccessPoints.ContainerAutoBind

Enable/disable container auto binding for access points. false No

Ob-
jects.AccessPoints.TemplateAutoApply

Enable/disable template auto apply for access points. false No

Ob-
jects.Assets.AllowDeleteIfLinked

Enable/disable deletion of linked assets. false No

Ob-
jects.AutobindOnConfigurationPoll

Enable/disable automatic object binding on configuration
polls.

true No

Ob-
jects.AutobindPollingInterval

Interval in seconds between automatic object binding polls. 3600 No

Ob-
jects.Clusters.ContainerAutoBind

Enable/disable container auto binding for clusters. false No

Ob-
jects.Clusters.TemplateAutoApply

Enable/disable template auto apply for clusters. false No

Ob-
jects.Conditions.PollingInterval

Interval in seconds between polling (re-evaluating) of condi-
tion objects.

60 Yes

Ob-
jects.ConfigurationPollingInterval

Interval in seconds between configuration polls. 3600 Yes

continues on next page

468 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Table 3 – continued from previous page
Parameter Description Default Value Restart

Re-
quired

Ob-
jects.DeleteUnreachableNodesPeriod

Delete nodes which were unreachable for a number of days
specified by this parameter. If this parameter is set to 0 then
unreachable nodes will never be deleted.

0 Yes

Objects.EnableZoning Enable/disable zoning support. true Yes
Ob-
jects.Interfaces.DefaultExpectedState

Default expected state for new interface objects. AUTO No

Ob-
jects.Interfaces.Enable8021xStatusPoll

Globally enable or disable checking of 802.1x port state dur-
ing status poll.

true No

Ob-
jects.Interfaces.NamePattern

Custom name pattern for interface objects. This field supports
macros. E.g. if set to %n%{suffix}, interface name will
be composed from original name and node’s custom attribute
suffix.

No

Ob-
jects.Interfaces.UseAliasesControl usage of interface aliases (or descriptions).

Possible values are:
• 0 - Always use name (Don’t use aliases)
• 1 - Use aliases instead of names, when possible
• 2 - Concatenate alias and name to form interface
object name

• 3 - Concatenate name and alias to form interface
object name

Don’t use aliases No

Ob-
jects.Interfaces.UseIfXTable

Enable/disable the use of SNMP ifXTable instead of ifTable
for interface configuration polling. See SNMP for more infor-
mation.

true No

Ob-
jects.MobileDevices.ContainerAutoBind

Enable/disable container auto binding for mobile devices. false No

Ob-
jects.MobileDevices.TemplateAutoApply

Enable/disable template auto apply for mobile devices. false No

Ob-
jects.NetworkMaps.DefaultBackgroundColor

Default background color for new network map objects (as
RGB value).

0xffffff No

Ob-
jects.Nodes.CapabilityExpirationGracePeriod

Grace period (in seconds) for capability expiration after node
recovered from unreachable state.

3600 No

Ob-
jects.Nodes.CapabilityExpirationTime

Time (in seconds) before capability (NetXMS Agent, SNMP,
EtherNet/IP, etc) expires if node is not responding for re-
quests via appropriate protocol.

604800 No

Ob-
jects.Nodes.FallbackToLocalResolver

Enable/disable fallback to server’’s local resolver if node ad-
dress cannot be resolved via zone proxy.

false No

Ob-
jects.Nodes.ResolveDNSToIPOnStatusPoll

Enable/disable resolve DNS to IP on status poll. Never No

Ob-
jects.Nodes.ResolveDNSToIPOnStatusPoll.Interval

Number of status polls between resolving primary host name
to IP, if Objects.Nodes.ResolveDNSToIPOnStatusPoll set to
“Always”.

0 No

Ob-
jects.Nodes.ResolveNames

Resolve node name using DNS, SNMP system name, or host
name if current node name is it’s IP address.

true No

Ob-
jects.Nodes.Resolver.AddressFamilyHint

Address family hint for node DNS name resolver. None No

Ob-
jects.Nodes.SyncNamesWithDNS

Enable/disable synchronization of node names with DNS on
each configuration poll.

false No

continues on next page

46.5. Server configuration parameters 469

NetXMS Administrator Guide, Release 5.2.0

Table 3 – continued from previous page
Parameter Description Default Value Restart

Re-
quired

Ob-
jects.PollCountForStatusChange

The number of consecutive unsuccessful polls required to de-
clare interface as down.

1 Yes

Ob-
jects.ResponsibleUsers.AllowedTags

Allowed tags for responsible users (Comma-separated list). No

Ob-
jects.Security.CheckTrustedObjects

Enable/disable trusted objects checks for cross-object access. false No

Ob-
jects.Sensors.ContainerAutoBind

Enable/disable container auto binding for sensors. false No

Ob-
jects.Sensors.TemplateAutoApply

Enable/disable template auto apply for sensors. false No

Ob-
jects.StatusCalculation.CalculationAlgorithm

Default alghorithm for calculation object status from it’s DCIs,
alarms and child objects. Possible values are:

• Most critical
• Single threshold. Threshold value is defined by Sta-
tusSingleThreshold parameter.

• Multiple thresholds. Threshold values are defined by
StatusThresholds parameter.

Most critical Yes

Ob-
jects.StatusCalculation.FixedStatusValue

Value for status propagation if ‘’StatusPropagationAlgorithm’’
server configuration parameter is set to ‘’2 - Fixed’’.

0 Yes

Ob-
jects.StatusCalculation.PropagationAlgorithm

Default algorithm for status propagation (how object’s status
is affected by it’s child object statuses). Possible values are:

• Unchanged
• Fixed. Status value is defined by FixedStatusValue pa-
rameter.

• Relative with offset. Offset value is defined by Sta-
tusShift parameter.

• Translated. Status translation is defined by Status-
Translation parameter.

Unchanged Yes

Ob-
jects.StatusCalculation.Shift

Status shift value for Relative propagation algorithm. 0 Yes

Ob-
jects.StatusCalculation.SingleThreshold

Threshold value (in%) for Single threshold status calculation
algorithm.

75 Yes

Ob-
jects.StatusCalculation.Thresholds

Threshold values for Multiple thresholds status calculation
algorithm. Every byte (from left to right) of this hex num-
ber express threshold values for warning, minor, major and
critical statuses.

503C2814 (80%,
60%, 40%, 20%)

Yes

Ob-
jects.StatusCalculation.Translation

Values for Translated status propagation algorithm. Every
byte (from left to right) of this hex number defines status
translation for Warning, Minor, Major and Critical statuses.
Status values are:

• 1 - Warning
• 2 - Minor
• 3 - Major
• 4 - Critical

01020304 Yes

continues on next page

470 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Table 3 – continued from previous page
Parameter Description Default Value Restart

Re-
quired

Ob-
jects.StatusPollingInterval

Interval in seconds between status polls. 60 Yes

Ob-
jects.Subnets.DefaultSubnetMaskIPv4

Default mask for synthetic IPv6 subnets. 24 No

Ob-
jects.Subnets.DefaultSubnetMaskIPv6

Default mask for synthetic IPv6 subnets. 64 No

Ob-
jects.Subnets.DeleteEmpty

Enable/disable automatic deletion of subnet objects that have
no nodes within. When enabled, empty subnets will be
deleted by housekeeping process.

false Yes

Objects.SyncInterval Interval in seconds between writing object changes to the
database.

60 Yes

RA-
DIUS.AuthMethod

RADIUS authentication method to be used (PAP, CHAP,
MS-CHAPv1, MS-CHAPv2).

PAP No

RA-
DIUS.NASIdentifier

Value for NAS-Identifier attribute in RADIUS request (will
not be sent if empty)

none No

RADIUS.NumRetries The number of retries for RADIUS authentication. 5 No
RADIUS.Port Port number used for connection to primary RADIUS server. 1645 No
RA-
DIUS.SecondaryPort

Port number used for connection to secondary RADIUS
server.

1645 No

RA-
DIUS.SecondarySecret

Shared secret used for communication with secondary RA-
DIUS server.

netxms No

RA-
DIUS.SecondaryServer

Host name or IP address of secondary RADIUS server. none No

RADIUS.Secret Shared secret used for communication with primary RADIUS
server.

netxms No

RADIUS.Server Host name or IP address of primary RADIUS server. none No
RA-
DIUS.ServiceType

Value for Service-Type attribute in RADIUS request. Value
of 0 will exclude service type from request attributes.

8 No

RADIUS.Timeout Timeout in seconds for requests to RADIUS server 3 No
Report-
ingServer.Enable

Enable/disable reporting server false Yes

Report-
ingServer.Hostname

The hostname of the reporting server. 127.0.0.1 Yes

ReportingServer.Port The port of the reporting server. 4710 Yes
Sched-
uler.TaskRetentionTime

Period (in seconds) after which non-recurring scheduled tasks
(e.g. Maintenance enter / Maintenance leave) are deleted.

86400 No

Server.AllowedCiphers A bitmask for encryption algorithms allowed in the server
(sum of the values to allow multiple algorithms at once):

• 1 - AES256
• 2 - Blowfish-256
• 4 - IDEA
• 8 - 3DES
• 16 - AES128
• 32 - Blowfish-128

63 Yes

Server.Color Identification color for this server. Used in status bar of man-
agement client.

No

continues on next page

46.5. Server configuration parameters 471

NetXMS Administrator Guide, Release 5.2.0

Table 3 – continued from previous page
Parameter Description Default Value Restart

Re-
quired

Server.CommandOutputTimeoutTime (in seconds) to wait for output of a local command ob-
ject tool.

60 No

Server.EscapeLocalCommandsEnable/disable TAB and new line characters replacement by
t n r in execute command on management server action.

false No

Server.ImportConfigurationOnStartupImport configuration (templates, events, object tools, etc) on
server startup. Configuration is imported from files located
on NetXMS server in share/templates. Missing elements are
identified by GUID.

Only missing ele-
ments

Yes

Server.MessageOfTheDayMessage to be shown when a user logs into the client. No
ServerName Name of this server. Displayed in status bar of management

client.
No

Server.RoamingMode Enable/disable roaming mode for server (when server can be
disconnected from one network and connected to another or
IP address of the server can change)

true No

Server.Security.2FA.TrustedDeviceTTLTTL (in seconds) for 2FA trusted device. 0 No
Server.Security.CaseInsensitiveLoginNamesEnable/disable case insensitive login names. false Yes
Server.Security.ExtendedLogQueryAccessControlEnable/disable extended access control in log queries. When

enabled, server will check user’s access to objects and only
select those log records where user has read access to related
object. Please note that enabling this option can cause slow
and inefficient SQL queries depending on number of objects
and actual access right assignment.

false No

Server.Security.GraceLoginCountNumber of times a user can login if password has been ex-
pired.

5 No

Server.Security.IntruderLockoutThresholdNumber of incorrect password attempts after which a user
account is temporarily locked.

0 No

Server.Security.IntruderLockoutTimeDuration of user account temporarily lockout (in minutes)
if allowed number of incorrect password attempts was ex-
ceeded.

30 No

Server.Security.MinPasswordLengthDefault minimum password length for a NetXMS user. The
default applied only if per-user setting is not defined.

0 No

Server.Security.PasswordComplexitySet of flags to enforce password complexity (see Password
Policy for more details).

0 No

Server.Security.PasswordExpirationPassword expiration time in days. If set to 0, password expi-
ration is disabled.

0 No

Server.Security.PasswordHistoryLengthNumber of previous passwords to keep. Users are not allowed
to set password if it matches one from previous passwords list.

0 No

Server.Security.RestrictLocalConsoleAccessIf enabled, restrict access to local server debug console (via
nxagm command line tool) only to authenticated users with
server debug console access rights.

true No

SNMP.Codepage Default server SNMP codepage No
SNMP.Discovery.SeparateProbeRequestsUse separate SNMP request for each test OID. 0 No
SNMP.EngineId Server SNMP engine ID. 80:00:DF:4B:05:20:10:08:04:02:01:00Yes
SNMP.RequestTimeout Timeout in milliseconds for SNMP requests sent by NetXMS

server.
1500 Yes

SNMP.RetryCount Number of retries for SNMP requests sent by NetXMS
server.

3 Yes

continues on next page

472 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Table 3 – continued from previous page
Parameter Description Default Value Restart

Re-
quired

SNMP.Traps.AllowVarbindsConversionAllows/disallows conversion of SNMP trap OCTET STRING
varbinds into hex strings if they contain non-printable charac-
ters.

1 No

SNMP.Traps.Enable Enable/disable SNMP trap processing. A dedicated thread
will be created if set to true.

true Yes

SNMP.Traps.ListenerPortPort used for SNMP traps. 162 Yes
SNMP.Traps.LogAll Log all SNMP traps (even those received from addresses not

belonging to any known node).
false No

SNMP.TrapLogRetentionTimeThe time (in days) how long SNMP trap logs are retained. 90 No
SNMP.Traps.ProcessUnmanagedNodesEnable/disable processing of SNMP traps received from un-

managed nodes.
false No

SNMP.Traps.RateLimit.DurationTime period (in seconds) for SNMP traps per second to be
above threshold that defines SNMP trap flood condition.

15 No

SNMP.Traps.RateLimit.ThresholdThreshold for number of SNMP traps per second that defines
SNMP trap flood condition. Detection is disabled if 0 is set.

0 No

SNMP.Traps.SourcesInAllZonesSearch all zones to match trap/syslog source address to node. false Yes
Sys-
log.AllowUnknownSources

Enable or disable processing of syslog messages from un-
known sources.

false No

Syslog.Codepage Default server syslog codepage. No
Syslog.EnableListener Enable/disable receiving of syslog messages. 0 Yes
Syslog.EnableStorage Enable/disable local storage of received syslog messages in

NetXMS database.
true No

Sys-
log.IgnoreMessageTimestamp

Ignore timestamp received in syslog messages and always use
server time.

false No

Syslog.ListenPort UDP port used by built-in syslog server. 514 Yes
Sys-
log.NodeMatchingPolicy

Node matching policy for built-in syslog daemon. Possible
values are:

• IP,then hostname - syslog message source IP address,
then hostname

• Hostname,then IP - hostname, then syslog message
source IP address

IP,then hostname Yes

Syslog.RetentionTime Retention time in days for stored syslog messages. All mes-
sages older than specified will be deleted by housekeeping
process.

90 No

Thread-
Pool.Agent.BaseSize

This parameter represents base thread pool size for threads
that receive data, traps, events, etc from agents. This is mini-
mal number of threads that will always run.

32 Yes

Thread-
Pool.Agent.MaxSize

This parameter represents maximum thread pool size for
threads that receive data, traps, events, etc from agents. In
case of high load on existing threads server will increase num-
ber of threads up to this value. When load come back to nor-
mal, number of threads will be automatically decreased to
base size.

256 Yes

Thread-
Pool.DataCollector.BaseSize

This parameter represents base thread pool size for data col-
lector threads. This is minimal number of threads that will
always run.

10 Yes

continues on next page

46.5. Server configuration parameters 473

NetXMS Administrator Guide, Release 5.2.0

Table 3 – continued from previous page
Parameter Description Default Value Restart

Re-
quired

Thread-
Pool.DataCollector.MaxSize

This parameter represents maximum thread pool size for data
collector threads. In case of high load on existing threads
server will increase number of threads up to this value. When
load come back to normal, number of threads will be automat-
ically decreased to base size.

250 Yes

Thread-
Pool.Discovery.BaseSize

This parameter represents base thread pool size for network
discovery threads. This is minimal number of threads that
will always run.

8 Yes

Thread-
Pool.Discovery.MaxSize

This parameter represents maximum thread pool size for net-
work discovery threads. In case of high load on existing
threads server will increase number of threads up to this value.
When load come back to normal, number of threads will be
automatically decreased to base size.

64 Yes

Thread-
Pool.Main.BaseSize

This parameter represents base thread pool size for threads
that perform general system tasks. This is minimal number
of threads that will always run.

8 Yes

Thread-
Pool.Main.MaxSize

This parameter represents maximum thread pool size for
threads that perform general system tasks. In case of high load
on existing threads server will increase number of threads up
to this value. When load come back to normal, number of
threads will be automatically decreased to base size.

256 Yes

Thread-
Pool.Poller.BaseSize

This parameter represents base thread pool size for threads
that perform all types of polls: Status poll, Configuration
poll, etc. except DCI collection. This is minimal number
of threads that will always run.

10 Yes

Thread-
Pool.Poller.MaxSize

This parameter represents maximum thread pool size for
threads that perform all types of polls: Status poll, Config-
uration poll, etc. except DCI collection. In case of high load
on existing threads server will increase number of threads up
to this value. When load come back to normal, number of
threads will be automatically decreased to base size.

250 Yes

Thread-
Pool.Scheduler.BaseSize

This parameter represents base thread pool size for scheduler
threads. This is minimal number of threads that will always
run.

1 Yes

Thread-
Pool.Scheduler.MaxSize

This parameter represents maximum thread pool size for
scheduler threads. In case of high load on existing threads
server will increase number of threads up to this value. When
load come back to normal, number of threads will be automat-
ically decreased to base size.

64 Yes

Thread-
Pool.Syncer.BaseSize

This parameter represents base thread pool size for threads
that perform object synchronization to the database. This is
minimal number of threads that will always run.

1 Yes

Thread-
Pool.Syncer.MaxSize

This parameter represents maximum thread pool size for
threads that perform object synchronization to the database.
In case of high load on existing threads server will increase
number of threads up to this value. When load come back to
normal, number of threads will be automatically decreased to
base size. Value of 1 will disable pool creation.

1 Yes

continues on next page

474 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Table 3 – continued from previous page
Parameter Description Default Value Restart

Re-
quired

Topol-
ogy.AdHocRequest.ExpirationTime

Ad-hoc network topology request expiration time. Server will
use cached result of previous request if it is newer than given
interval.

900 No

Topol-
ogy.DefaultDiscoveryRadius

Default number of hops from seed node to be added to topol-
ogy map.

5 No

Topol-
ogy.PollingInterval

Interval in seconds between topology polls. 1800 Yes

Topol-
ogy.RoutingTableUpdateInterval

Interval in seconds between reading routing table from node. 300 Yes

UserA-
gent.DefaultMessageRetentionTime

Default user agent message retention time (in minutes). 10800 No

UserA-
gent.RetentionTime

User agent message historical data retention time (in days). 30 No

WindowsEv-
ents.EnableStorage

Enable/disable local storage of received Windows events in
NetXMS database.

true No

WindowsEv-
ents.LogRetentionTime

Retention time in days for records in Windows event log. All
records older than specified will be deleted by housekeeping
process.

90 No

46.6 Bundled Subagents

46.7 Command line tools
NetXMS provide some additional command line tools. Each tool serves its own purpose.

46.7.1 Database Manager
This is tool used to make manipulations with NetXMS database.

Usage: nxdbmgr [<options>] <command>

Valid commands are:

46.6. Bundled Subagents 475

NetXMS Administrator Guide, Release 5.2.0

background-convert Convert collected data to TimescaleDB format in background
background-upgrade Run pending background upgrade procedures
batch <file> Run SQL batch file
check Check database for errors
check-data-tables Check database for missing data tables
convert Convert standard PostgreSQL schema to TimescaleDB schema
export <file> Export database to file
get <name> Get value of server configuration variable
import <file> Import database from file
init [<type>] Initialize database. If type is not provided it will be deduced from driver name.
migrate <source> Migrate database from given source
reset-system-account Unlock user “system” and reset it’s password to default (“netxms”). Warning: server

(“netxmsd”) should be stoppedwhile performing password reset operation! SeeResetting
“system” user password for detailed procedure.

set <name> <value> Set value of server configuration variable
unlock Forced database unlock
upgrade Upgrade database to new version

Valid options are:

-c <config> Use alternate configuration file. Default is {search}
-C <dba> Create database and user before initialization using provided DBA credentials
-d Check collected data (may take very long time).
-D Migrate only collected data.
-e <table> Exclude specific table from export, import, or migration.
-E Fail check if fix required
-f Force repair - do not ask for confirmation.
-F <syntax> Fallback database syntax to use if not set in metadata.
-h Display help and exit.
-I MySQL only - specify TYPE=InnoDB for new tables.
-L <log> Migrate only specific log.
-m Improved machine readability of output.
-M MySQL only - specify TYPE=MyISAM for new tables.
-N Do not replace existing configuration value (“set” command only).
-o Show output from SELECT statements in a batch.
-P Pause after error.
-q Quiet mode (don’t show startup banner).
-s Skip collected data during export, import, conversion, or migration.
-S Skip collected data during export, import, or migration and do not clear or create data

tables.
-t Enable trace mode (show executed SQL queries).
-T <recs> Transaction size for migration.
-v Display version and exit.
-x Ignore collected data import/migration errors
-X Ignore SQL errors when upgrading (USE WITH CAUTION!!!)
-Y <table> Migrate only given table.
-Z <log> Exclude specific log from export, import, or migration.

476 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Database initialization

nxdbmgr init

Used to initialize the database for the first time. Database and user should already exist. Database name and credentials
are taken from server configuration file.

Check database for errors
It’s recommended to check database for errors when performing server upgrade or after server process has crashed or
was killed. Server process should be stopped when performing the check. To perform the check, execute the following
command:

nxdbmgr check

Unlocking database
When NetXMS server process or nxdbmgr starts, it makes a record in the database meaning that it locked this database
and no other server process should work with it. This prevents situations when due to incorrect configuration two server
processes connect to same database, as this would corrupt data in the database.
When server process or nxdbmgr stops, it would remove the lock. However, if process was not able to stop correctly, the
lock could stay in the database and manual unlocking using nxdbmgr might be needed. The procedure is the following:

1) Make sure that server process is not running, e.g. on Linux you can check by running:

ps aux | grep netxmsd

2) Unlock database by running:

nxdbmgr unlock

Database migration
nxdbmgr allows to migrate NetXMS database between different database management systems supported by NetXMS
(e.g. from MySQL to Postgres). This also allows to migrate the database from one host to another.
Migration is only possible when NetXMS server process is stopped. It is recommended to perform database check prior
to migration with the help of nxdbmgr check command.
Connection parameters and credentials for DESTINATION database are taken from server configuration file (or from
arbitrary configuration file specified with -c option).
Connection parameters and credentials for SOURCE database are taken from same format configuration file that is pro-
vided as nxdbmgr parameter.
Destination database should be initialized prior to migration by running nxdbmgr init.
To migrate the whole database:

nxdbmgr migrate netxmsd-source-db.conf

Note

You may need to use full path to .conf file

46.7. Command line tools 477

NetXMS Administrator Guide, Release 5.2.0

Migration can also be performed as two-step process - on the first step only configuration data is transferred, then server
is started on the new database and collected data and logs are transferred in the background. First step:

nxdbmgr -s -Z all migrate netxmsd-source-db.conf

After completion and starting server on the new database, run below two commands to transfer collected data and logs:

nxdbmgr -D migrate netxmsd-source-db.conf

nxdbmgr -S -L all migrate netxmsd-old.conf

In-place conversion from Postgres to Timescale
nxdbmgr allows to perform in-place conversion from standard PostgreSQL schema to TimescaleDB schema. This is
irreversible operation. It’s strongly recommended to have database backup prior to running this. Conversion is only
possible when NetXMS server process is stopped.
To convert the whole database:

nxdbmgr convert

Conversion can also be performed in two steps. First step requires server process to be stopped, log tables are converted
during that step. Then server can be started and second step - conversion of tables with collected data can be performed.
First step:

nxdbmgr -s convert

After completion and starting server, run the second step:

nxdbmgr background-convert

Database export and import
nxdbmgr allows convenient way to export and import database. To ensure export data consistancy, NetXMS server should
be stopped. In large deployments export may take long time.

nxdbmgr export mysql_backup.sql

It is possible to export configuration without collected DCI data and logs and this can be achieved with -s and -Z switches.
Use -e switch to exclude specific tables from export.

nxdbmgr -s -Z all -e hardware_inventory -e software_inventory export plsql_

↪→backup.sql

For database import similar syntax and switches apply. One can export full database, but import only configuration or
exclude any specific table.

nxdbmgr -e tdata_237 import plsql_backup.sql

46.7.2 nxaction
nxaction - command line tool used to execute preconfigured actions on NetXMS agent
Usage: nxaction <host> [<options>] <action> [<action args>]

Options:

478 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Source Description
-D level Set debug level (0..9 or off, default is off).
-e policy

Set encryption policy. Possible values are:
0 = Encryption disabled; 1 = Encrypt connection only if agent requires en-
cryption; 2 = Encrypt connection if agent supports encryption; 3 = Force
encrypted connection; Default value is 1.

-h Display help and exit.
-K file Specify server’s key file (default is /var/lib/netxms/.server_key).
-o Show action’s output.
-O port Proxy agent’s port number. Default is 4700.
-p port Agent’s port number. Default is 4700.
-s secret Shared secret for agent authentication.
-S secret Shared secret for proxy agent authentication.
-v Display version and exit.
-w seconds Set command timeout (default is 5 seconds).
-W seconds Set connection timeout (default is 30 seconds).
-X addr Use proxy agent at given address.

Example:

$ nxaction 127.0.0.1 Agent.Restart

Action executed successfully

Note

you can use nxget -l 127.0.0.1 Agent.ActionList to query list of available actions from agent

46.7.3 nxadm
Nxadm is used for server console access and script execution; provides built-in commands for server debugging.
Usage:

• nxadm [-u <login>] [-P|-p <password>] -c <command>

• nxadm [-u <login>] [-P|-p <password>] -i

• nxadm [-u <login>] [-P|-p <password>] [-r] -s <script>

• nxadm -P

• nxadm -p <db password>

Options:

46.7. Command line tools 479

NetXMS Administrator Guide, Release 5.2.0

Source Description
-c <command> Execute given command at server debug console and disconnect.
-i Connect to server debug console in interactive mode.
-h Display help and exit.
-p <password> Provide database password for server startup or user’s password for console access.
-P Provide database password for server startup or user’s password for console access

(password read from terminal).
-r Use script’s return value as exit code.
-s <script> Execute given NXSL script and disconnect.
-u name User name for authentication.
-v Display version and exit.

Example

$ nxadm -u admin -p admin -i

NetXMS Server Remote Console V5.1.1 Ready

Enter "help" for command list

netxmsd: help

Valid commands are:

at +<sec> <script> [<params>] - Schedule one time script execution task

at <schedule> <script> [<params>] - Schedule repeated script execution task

clear - Show list of valid component names for␣

↪→clearing

clear <component> - Clear internal data or queue for given␣

↪→component

dbcp reset - Reset database connection pool

debug [<level>|off] - Set debug level (valid range is 0..9)

debug [<debug tag> <level>|off|default]

- Set debug level for a particular debug␣

↪→tag

debug sql [on|off] - Turn SQL query trace on or off

down - Shutdown NetXMS server

exec <script> [<params>] - Executes NXSL script from script library

exit - Exit from remote session

kill <session> - Kill client session

get <variable> - Get value of server configuration␣

↪→variable

help - Display this help

hkrun - Run housekeeper immediately

ldapsync - Synchronize ldap users with local user␣

↪→database

log <text> - Write given text to server log file

logmark - Write marker ******* MARK ******* to␣

↪→server log file

ping <address> - Send ICMP echo request to given IP␣

↪→address

poll <type> <node> - Initiate node poll

raise <exception> - Raise exception

scan <range start> <range end> [proxy <id>|zone <uin>] [discovery]

- Manual active discovery scan for given␣
(continues on next page)

480 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

(continued from previous page)
↪→range. Without 'discovery' parameter prints results only

set <variable> <value> - Set value of server configuration␣

↪→variable

show arp <node> - Show ARP cache for node

show authtokens - Show user authentication tokens

show components <node> - Show physical components of given node

show dbcp - Show active sessions in database␣

↪→connection pool

show dbstats - Show DB library statistics

show discovery ranges - Show state of active network discovery␣

↪→by address range

show ep - Show event processing threads statistics

show fdb <node> - Show forwarding database for node

show flags - Show internal server flags

show heap details - Show detailed heap information

show heap summary - Show heap usage summary

show index <index> - Show internal index

show modules - Show loaded server modules

show ndd - Show loaded network device drivers

show objects [<filter>] - Dump network objects to screen

show pe - Show registered prediction engines

show pollers - Show poller threads state information

show queues - Show internal queues statistics

show routing-table <node> - Show cached routing table for node

show sessions - Show active client sessions

show stats - Show global server statistics

show syncer - Show syncer statistics

show tasks - Show background tasks

show threads [<pool>] - Show thread statistics

show topology <node> - Collect and show link layer topology for␣

↪→node

show tunnels - Show active agent tunnels

show users - Show users

show version - Show NetXMS server version

show vlans <node> - Show cached VLAN information for node

show watchdog - Display watchdog information

tcpping <address> <port> - TCP ping on given address and port

tp loadtest <pool> <tasks> - Start test tasks in given thread pool

trace <node1> <node2> - Show network path trace between two nodes

tunnel bind <tunnel> <node> - Bind agent tunnel to node

tunnel unbind <node> - Unbind agent tunnel from node

Almost all commands can be abbreviated to 2 or 3 characters

You can use the following shortcuts to execute command from history:

!! - Execute last command

!<N> - Execute Nth command from history

!-<N> - Execute Nth command back from last one

46.7. Command line tools 481

NetXMS Administrator Guide, Release 5.2.0

46.7.4 nxaevent
This tool can be used to push events to NetXMS server via local NetXMS agent.
Usage:

• nxaevent [OPTIONS] event_code [parameters]

• nxaevent [OPTIONS] -n event_code [name=parameter ...]

Source Description
-h, –help Display this help message.
-n, –named-parameters Parameters are provided in named format: name=value.
-o, –object <id> Send event on behalf of object with given id.
-q, –quiet Suppress all messages.
-t, –timestamp-unix <time> Specify timestamp for event as UNIX timestamp.
-T, –timestamp-text <time> Specify timestamp for event as YYYYMMDDhhmmss.
-v, –verbose Enable verbose messages. Add twice for debug
-V, –version Display version information.

Send event to server via agent:

nxaevent MY_APP_EVENT

nxaevent -n MY_APP_EVENT state=UP desc="Application started"

46.7.5 nxalarm
nxalarm is command line alarm management utility.
Usage: nxalarm [<options>] <server> <command> [<alarm_id>]

Commands:

Source Description
ack <id> Acknowledge alarm
add-comment <id> <text> Add comment to alarm
get-comments <id> Get comments of alarm
list List active alarms
open <id> Open helpdesk issue from alarm
resolve <id> Resolve alarm
terminate <id> Terminate alarm

Options:

482 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Source Description
-c Codepage (default is ISO8859-1)
-D Turn on debug mode.
-e Encrypt session (for compatibility only, session is always encrypted).
-h Display help and exit.
-o <format> Output format for list (see below).
-P <password> Specify user’s password. Default is empty password.
-s Sticky acknowledge (only for “ack” command).
-S <minutes> Sticky acknowledge with timeout (only for “ack” command).
-u <user> Login to server as <user>. Default is “guest”.
-v Display version and exit.
-w <seconds> Specify command timeout (default is 3 seconds).

Output format string syntax:
• %a - Primary IP address of source object
• %A - Primary host name of source object
• %c - Repeat count
• %d - Related DCI ID
• %e - Event code
• %E - Event name
• %h - Helpdesk state as number
• %H - Helpdesk state as text
• %i - Source object identifier
• %I - Alarm identifier
• %m - Message text
• %n - Source object name
• %s - Severity as number
• %S - Severity as text
• %x - Alarm state as number
• %X - Alarm state as text
• %% - Percent sign

Default format is %I %S %H %m
Examples
List alarms:

nxalarm -u admin -P adminpasswd 127.0.0.1 list

Resolve alarm:

nxalarm -u admin -P adminpasswd 127.0.0.1 resolve 226875

46.7. Command line tools 483

NetXMS Administrator Guide, Release 5.2.0

46.7.6 nxap
nxap - command line tool used to manage agent policies
Usage:

• nxap [<options>] -l <host>

• nxap [<options>] -u <guid> <host>

Options:

Source Description
-l List policies.
-u <guid> Uninstall policy.

Common options:

Source Description
-D level Set debug level (0..9 or off, default is off).
-e policy

Set encryption policy. Possible values are:
0 = Encryption disabled; 1 = Encrypt connection only if agent requires en-
cryption; 2 = Encrypt connection if agent supports encryption; 3 = Force
encrypted connection; Default value is 1.

-h Display help and exit.
-K file Specify server’s key file (default is /var/lib/netxms/.server_key).
-O port Proxy agent’s port number. Default is 4700.
-p port Agent’s port number. Default is 4700.
-s secret Shared secret for agent authentication.
-S secret Shared secret for proxy agent authentication.
-v Display version and exit.
-w seconds Set command timeout (default is 5 seconds).
-W seconds Set connection timeout (default is 30 seconds).
-X addr Use proxy agent at given address.

Example
List agent policies:

nxap 127.0.0.1 -l

46.7.7 nxappget
nxappget - command line tool for reading metrics from application agents
Usage: nxappget agent_name metric_name

Options:

484 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Source Description
-V, –version Display version information.
-h, –help Display this help message.
-v, –verbose Enable verbose messages. Add twice for debug
-q, –quiet Suppress all messages.

46.7.8 nxapush
This tool has same usage as nxpush, but it sends data through local agent.
When new version of NetXMS is released - version of server protocol is changed. Change of version affects on server
communication with other tools like nxpush. So after each server update nxpush tool also should be updated. In case of
usage nxapush - only agent should be updated as this tool uses agent protocol to send data.
Usage:

• nxapush [OPTIONS] [@batch_file] [values]

• nxapush [OPTIONS] -

Options:

Source Description
-h, –help Display this help message.
-l, –local-cache Push to agent’s local cache.
-o, –object <id> Push data on behalf of object with given id.
-q, –quiet Suppress all messages.
-s, –statsite Use statsite sink format.
-t, –timestamp-unix <time> Specify timestamp for data as UNIX timestamp.
-T, –timestamp-text <time> Specify timestamp for data as YYYYMMDDhhmmss.
-v, –verbose Enable verbose messages. Add twice for debug
-V, –version Display version information.

Note

• Values should be given in format dci=value or (if statsite sink format is selected): dci|value|timestamp
where dci can be specified by it’s name

• Name of batch file cannot contain character = (equality sign)
• Use - character in place of values to read from standard input

Examples
Push two values:

nxapush PushParam1=1 PushParam2=4

Push values from file:

nxapush @file

46.7. Command line tools 485

NetXMS Administrator Guide, Release 5.2.0

46.7.9 nxencpasswd
This tool can be used to obfuscate passwords stored in server and agent configuration files as well as various places in the
system, e.g. ssh passwords, notification channel passwords, etc.
Usage:

• nxencpasswd [<options>] <login> [<password>]

• nxencpasswd [<options>] -a [<password>]

Options:

Source Description
-a Encrypt agent’s secret.
-h Display help and exit.
-v Display version and exit.

Note

If password is not provided it will be requested from terminal.

46.7.10 nxevent
Nxevent is installed with NetXMS client distribution. Sends events to server using client protocol. On Linux is provided
by netxms-client package.
Usage:

• nxevent [<options>] <server> <event> [<param_1> [... <param_N>]]

• nxevent [<options>] -n <server> <event> [name=parameter [... name=parameter]]

Options:

Source Description
-c Codepage (default is ISO8859-1).
-C <count> Repeat event sending given number of times.
-d Turn on debug mode.
-e Encrypt session (for compatibility only, session is always encrypted).
-h Display help and exit.
-i <interval> Repeat event sending with given interval in milliseconds.
-n Parameters are provided in named format (name=value).
-o <id> Specify source object ID.
-P <password> Specify user’s password. Default is empty password.
-S Skip protocol version check (use with care).
-T <tag> User tag to be associated with the message. Default is empty.
-u <user> Login to server as <user>. Default is “guest”.
-v Display version and exit.
-w <seconds> Specify command timeout (default is 3 seconds).

Example
Send event to server:

486 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

nxevent -u admin -P adminpassword 127.0.0.1 MY_APP_EVENT

nxevent -u admin -P adminpassword 127.0.0.1 MY_APP_EVENT state=UP desc=

↪→"Application started"

46.7.11 nxget
This tool is intended to get values of Metric from NetXMS agent.
Usage: nxget [<options>] <host> [<metric> [<metric> ...]]

Where host is the name or IP address of the host running NetXMS agent; and metric is a metric, list or table name,
depending on given options. When metric is requested without explicitly specifying metric type (table or list), nxget
attempts to get values trying types in the following order: singe-value metric, table, list.

Valid options for nxget

Option Description
-b Batch mode - get all parameters listed on command line.
-C Get agent’s configuration file
-d delimiter Print table content as delimited text.
-D level Set debug level (default is 0).
-e policy Set encryption policy. Possible values are:

0 = Encryption disabled; 1 = Encrypt connection only if agent
requires encryption; 2 = Encrypt connection if agent supports en-
cryption; 3 = Force encrypted connection;

Default value is 1.

-E file Take screenshot. First parameter is file name, second (optional) is session name.
-f Do not try lists and tables if requested metric does not exist.
-F Get information about given file set. Each parameter is separate file name.
-h Display help and exit.
-i seconds Get specified parameter(s) continuously with given interval.
-I Get list of supported parameters.
-K file

Specify server’s key file
(default is /opt/netxms/var/lib/netxms/.server_key).

-l Requested parameter is a list.
-n Show parameter’s name in result.
-N addr Check state of network service at given address.
-o proto Protocol number to be used for service check.
-O port Proxy agent’s port number. Default is 4700.
-p port Agent’s port number. Default is 4700.
-P port Network service port (to be used with -N option).
-r string Service check request string.
-R string Service check expected response string.
-s secret Shared secret for authentication.
-S secret Shared secret for proxy agent authentication.

continues on next page

46.7. Command line tools 487

NetXMS Administrator Guide, Release 5.2.0

Table 4 – continued from previous page
Option Description
-t type

Set type of service to be checked.
Possible types are - custom, ssh, pop3, smtp, ftp, http, https, telnet.

-T Requested parameter is a table.
U Get list of active user sessions.
-v Display version and exit.
-w seconds Set command timeout (default is 5 seconds).
-W seconds Set connection timeout (default is 30 seconds).
-X addr Use proxy agent at given address.
-Y Read remote system time.

Examples
Get value of Agent.Version metric from agent at host 10.0.0.2:

nxget 10.0.0.2 Agent.Version

Get list of supported parameters from agent at host 10.0.0.2:

nxget 10.0.0.2 -I

Get list of supported lists from agent at host 10.0.0.2:

nxget 10.0.0.2 Agent.SupportedLists -l

Get list of supported tables from agent at host 10.0.0.2:

nxget 10.0.0.2 Agent.SupportedTables -l

Get value of Agent.Uptime and System.Uptime metrics in one request, with output in metric = value form:

nxget -bn 10.0.0.2 Agent.Uptime System.Uptime

Get agent configuration file from agent at host 10.0.0.2:

nxget -C 10.0.0.2

Get value of System.PlatformName metric from agent at host 10.0.0.2, connecting via proxy agent at 172.16.1.1:

nxget -X 172.16.1.1 10.0.0.2 System.PlatformName

Get value of Agent.AcceptedConnections enum from agent at host 10.0.0.10, forcing use of encrypted connection:

nxget -e 3 -l 10.0.0.10 Agent.AcceptedConnections

Check POP3 service at host 10.0.0.4 via agent at host 172.16.1.1:

nxget -S 10.0.0.4 -t 2 -r user:pass 172.16.1.1

488 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Useful lists for debugging purpose

List name Description
Agent.ActionList List of defined actions
Agent.SubAgentList List of loaded subagents
Agent.SupportedLists List of supported lists
Agent.SupportedParametersList of supported parameters
Agent.SupportedPushParametersList of supported push parameters
Agent.SupportedTables List of supported table parameters
Agent.ThreadPools List of thread pools

46.7.12 nxmibc
nxmibc - cli tool for mib file management. Adding MIB files should be performed using management client, see: Import
MIB. This tool should not be normally used.
Usage: nxmibc [options] source1 ... sourceN

Options:

Option Description
-a Compile all input files (continue after file parsing errors)
-d <dir> Include all MIB files from given directory to compilation
-e <ext> Specify file extensions (default extension: “mib”)
-m Produce machine-readable output
-o <file> Set output file name (default is netxms.mib)
-P Pause before exit
-r Scan sub-directories
-s Strip descriptions from MIB objects
-u Do not compress output file
-z Compress output file

Note

compression is ON by default, so option -z effectively does nothing and left only for backward compatibility.

Example
Compile and compress mib file:

nxmibc -d /usr/share/netxms/mibs -o /var/lib/netxms/netxms.mib -z

46.7.13 nxpush
nxpush is a command line tool used to push DCI values to NetXMS server.
There are different options how this tool can be used:

• with help of this tool data collected with different monitoring system can be pushed also to netxms
• can be used on nodes where agent can not be installed(not the case for nxapush)
• can be used on nodes behind NAT with no port forwarding option

46.7. Command line tools 489

NetXMS Administrator Guide, Release 5.2.0

Usage: nxpush [OPTIONS] [server] [@batch_file] [values]

Options:

Option Description
-b, –batchsize <size> Batch size (default is to send all data in one batch).
-c, –codepage <page> Codepage (default is ISO8859-1).
-e, –encrypt Encrypt session (for compatibility only, session is always encrypted).
-h, –help Display this help message.
-H, –host <host> Server address.
-P, –password <password> Specify user’s password. Default is empty.
-q, –quiet Suppress all messages.
-S, –skip-version-check Skip protocol version check (use with care).
-t, –timestamp-unix <time> Specify timestamp for data as UNIX timestamp.
-T, –timestamp-text <time> Specify timestamp for data as YYYYMMDDhhmmss.
-u, –user <user> Login to server as user. Default is “guest”.
-v, –verbose Enable verbose messages. Add twice for debug.
-V, –version Display version information.

Note

• Values should be given in the following format: dci=value where DCI can be specified by ID or name and
node by ID, object name, DNS name, or IP address. If you wish to specify node by DNS name or IP address,
you should prefix it with @ character

• First parameter will be used as “host” if -H/–host is unset
• Name of batch file cannot contain character = (equality sign)

Examples:
Push two values to server 10.0.0.1 as user “sender” with password “passwd”. Values will be pushed to node with ID 104,
first to DCI with ID 4567, second to DCI with metric “PushParam”:

nxpush -H 10.0.0.1 -u sender -P passwd 104:4567=1 104:PushParam=4

Push values from file to server 10.0.0.1 as user “guest” without password:

nxpush 10.0.0.1 @file

Required server configurations are described there: Push metrics

46.7.14 nxscript
nxscript - command line utility for script management.
Usage: nxscript [options] script [arg1 [... argN]]

Options:

490 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Option Description
-5 Convert given script to NXSL version 5
-b Input is a binary file
-c Compile only
-C <count> Run script multiple times
-d Dump compiled script code
-e <name> Entry point
-E Show expression variables on exit
-m Show memory usage information
-M Show program metadata
-o <file> Write compiled script
-r Print script return value
-R Show list of required modules
-t Enable instruction trace

Example
Convert script to NXSL version 5:

nxscript -5 file.nxsl

46.7.15 nxsnmpget
This tool can be used to get SNMP Metric from node.
Usage: nxsnmpget [<options>] <host> <variables>

Options:

Option Description
-a <method> Authentication method for SNMP v3 USM. Valid methods are MD5, SHA1, SHA224,

SHA256, SHA384, SHA512
-A <passwd> User’s authentication password for SNMP v3 USM
-c <string> Community string. Default is “public”
-C <codepage> Codepage for remote system
-e <method> Encryption method for SNMP v3 USM. Valid methods are DES and AES
-E <passwd> User’s encryption password for SNMP v3 USM
-h Display help and exit
-i <seconds> Repeat request with given interval in seconds
-p <port> Agent’s port number. Default is 161
-u <user> User name for SNMP v3 USM
-v <version> SNMP version to use (valid values is 1, 2c, and 3)
-w <seconds> Request timeout (default is 3 seconds)
-x Show raw value in hex

Example
Get system description for given IP:

nxsnmpget -c public -v 2c 127.0.0.1 .1.3.6.1.2.1.1.1.0

46.7. Command line tools 491

NetXMS Administrator Guide, Release 5.2.0

46.7.16 nxsnmpset
nxsnmpset - command line tool used to set parameters on SNMP agent
Usage: nxsnmpset [<options>] <host> <variable>[@<type>] <value>

Options:

Option Description
-a <method> Authentication method for SNMP v3 USM. Valid methods are MD5, SHA1, SHA224,

SHA256, SHA384, SHA512
-A <passwd> User’s authentication password for SNMP v3 USM
-B Provided value is a base64 encoded raw value
-c <string> Community string. Default is “public”
-e <method> Encryption method for SNMP v3 USM. Valid methods are DES and AES
-E <passwd> User’s encryption password for SNMP v3 USM
-h Display help and exit
-H Provided value is a raw value encoded as hexadecimal string
-p <port> Agent’s port number. Default is 161
-t <type> Specify variable’s data type. Default is octet string.
-u <user> User name for SNMP v3 USM
-v <version> SNMP version to use (valid values is 1, 2c, and 3)
-w <seconds> Request timeout (default is 3 seconds)

Note

You can specify data type either as number or in symbolic form. Valid symbolic representations are
following:

• INTEGER
• STRING
• OID
• IPADDR
• COUNTER32
• GAUGE32
• TIMETICKS
• COUNTER64
• UINT32

46.7.17 nxsnmpwalk
nxsnmpwalk - command line tool used to retrieve parameters from SNMP agent
Usage: nxsnmpwalk [<options>] <host> <start_oid>

Options:

492 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Option Description
-a <method> Authentication method for SNMP v3 USM. Valid methods are MD5, SHA1, SHA224,

SHA256, SHA384, SHA512
-A <passwd> User’s authentication password for SNMP v3 USM
-c <string> Community string. Default is “public”
-C <codepage> Codepage for remote system
-e <method> Encryption method for SNMP v3 USM. Valid methods are DES and AES
-E <passwd> User’s encryption password for SNMP v3 USM
-h Display help and exit
-n <name> SNMP v3 context name
-p <port> Agent’s port number. Default is 161
-u <user> User name for SNMP v3 USM
-v <version> SNMP version to use (valid values is 1, 2c, and 3)
-w <seconds> Request timeout (default is 3 seconds)

Example
Get system description for given IP:

nxsnmpwalk -c public -v 2c 127.0.0.1 .1.3.6.1.2.1.1.1

46.7.18 nxupload
nxupload - command line tool used to upload files to NetXMS agent
Usage: nxupload [<options>] <host> <file>

Tool options:

Option Description
-C <options> Set package deployment options or command line (depending on package type)
-d <file> Fully qualified destination file name
-i Start installation of uploaded package.
-q Quiet mode.
-t <type> Set package type (default is “executable”).
-u Start agent upgrade from uploaded package.
-z Compress data stream with LZ4.
-Z Compress data stream with DEFLATE.

Common options:

46.7. Command line tools 493

NetXMS Administrator Guide, Release 5.2.0

Option Description
-D level Set debug level (0..9 or off, default is off).
-e policy

Set encryption policy. Possible values are:
0 = Encryption disabled; 1 = Encrypt connection only if agent requires encryption; 2
= Encrypt connection if agent supports encryption; 3 = Force encrypted connection;
Default value is 1.

-h Display help and exit.
-K file Specify server’s key file (default is /var/lib/netxms/.server_key).
-O port Proxy agent’s port number. Default is 4700.
-p port Agent’s port number. Default is 4700.
-s secret Shared secret for agent authentication.
-S secret Shared secret for proxy agent authentication.
-v Display version and exit.
-w seconds Set command timeout (default is 5 seconds).
-W seconds Set connection timeout (default is 30 seconds).

Example
Upload file to agent’s data directory:

nxupload localhost test_script.sh

46.7.19 nxwsget
nxwsget - command line tool used to query web services via NetXMS agent. Such agent needs to have EnableWebServi-
ceProxy=yes in its configuration.
Usage: nxwsget [<options>] <host> <URL> <path> [<path> ...]

Options:

494 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Option Description
-a auth HTTP authentication type. Valid methods are “none”, “basic”, “digest”, “ntlm”, “bearer”,

“any”, or “anysafe”. Default is “none”.
-c Do not verify service certificate.
-C Do not verify certificate’s name against host.
-d data Request data.
-D level Set debug level (default is 0).
-e policy Set encryption policy. Possible values are:

0 = Encryption disabled; 1 = Encrypt connection only if agent
requires encryption; 2 = Encrypt connection if agent supports en-
cryption; 3 = Force encrypted connection;

Default value is 1.

-F Follow location header that the server sends as part of a 3xx response.
-h Display help and exit.
-H header HTTP header (can be used multiple times).
-i seconds Query service continuously with given interval.
-K file Specify server’s key file (default is /var/lib/netxms/.server_key).
-l Requested parameter is a list.
-L login Web service login name.
-m method HTTP request method. Valid methods are GET, POST, PUT, PATCH, DELETE.
-O port Proxy agent’s port number. Default is 4700.
-p port Agent’s port number. Default is 4700.
-P passwod Web service password.
-r seconds Cache retention time.
-s secret Shared secret for agent authentication.
-S secret Shared secret for proxy agent authentication.
-t Use text parsing.
-v version
-w seconds Set command timeout (default is 5 seconds).
-W seconds Set connection timeout (default is 30 seconds).
-X addr Use proxy agent at given address.

Example

nxwsget 127.0.0.1 "http://api.open-notify.org/astros.json" .number

46.8 List of supported metrics
In this chapter will be described Agent and OS Subagent provided metrics.

46.8.1 Single value metrics
Agent.AcceptedConnections
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, H$1-$3X, FreeBSD, NetBSD, OpenBSD
Cumulative counter of connections accepted by agent

46.8. List of supported metrics 495

NetXMS Administrator Guide, Release 5.2.0

Agent.AcceptErrors
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Cumulative counter of agent’s accept() system call errors

Agent.ActiveConnections
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Number of active connections to agent

Agent.AuthenticationFailures
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Cumulative counter of failed AUTH commands (due to invalid secret)

Agent.ConfigurationServer
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Configuration server address set on agent startup.

Agent.FailedRequests
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Cumulative counter of requests with errors in processing (others than unsupported metrics)

Agent.GeneratedTraps

Note

Depricated

Data type: Unsigned Integer 64-bit
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Nuber of traps generated by agent

Agent.IsSubagentLoaded(*)
Data type: Integer
Parameters:

1. subagent name
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Check if given subagent is loaded. Return 1 if loaded and 0 if not.

496 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Agent.LastTrapTime

Note

Depricated

Data type: Unsigned Integer 64-bit
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Timestamp of last generated trap

Agent.IsUserAgentInstalled
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Check if user support application is installed

Agent.LocalDatabase.FailedQueries
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Agent local database: failed queries

Agent.LocalDatabase.LongRunningQueries
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Agent local database: long running queries

Agent.LocalDatabase.Status
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Agent local database: status

Agent.LocalDatabase.TotalQueries
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Agent local database: total queries executed

Agent.LogFile.Status
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Agent log status

46.8. List of supported metrics 497

NetXMS Administrator Guide, Release 5.2.0

Agent.Notification.QueueSize
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Agent notification queue size

Agent.ProcessedRequests
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Cumulative counter of successfully processed requests

Agent.Registrar
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Registrar server address set on agent startup

Agent.RejectedConnections
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Cumulative counter of connections rejected due to authentication failure

Agent.SentTraps

Note

Depricated

Data type: Unsigned Integer 64-bit
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Number of traps successfully sent to server

Agent.SourcePackageSupport
Data type: Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Non-zero if system is capable of building agent from source

Agent.SupportedCiphers
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
List of ciphers supported by agent

498 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Agent.SyslogProxy.IsEnabled
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Check if syslog proxy is enabled

Agent.SyslogProxy.ReceivedMessages
Data type: Unsigned Integer 64-bit
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Number of syslog messages received by agent

Agent.ThreadPool.ActiveRequests(*)
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Thread pool name. Possible options: MAIN, AGENT, POLLERS, SCHEDULER
Count of active requests for specified agent thread pool.

Agent.ThreadPool.CurrSize(*)
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Thread pool name. Possible options: MAIN, AGENT, POLLERS, SCHEDULER
Current size of specified agent thread pool.

Agent.ThreadPool.Load(*)
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Thread pool name. Possible options: MAIN, AGENT, POLLERS, SCHEDULER
Current load of specified agent thread pool. It’s active requests divided by current thread count in precent.

Agent.ThreadPool.LoadAverage(*)
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Thread pool name. Possible options: MAIN, AGENT, POLLERS, SCHEDULER
2. optional Normalization flag. If it is set to 1, then the value is divided to max thread count.

Active request moving average load of specified agent thread pool for last minute.

46.8. List of supported metrics 499

NetXMS Administrator Guide, Release 5.2.0

Agent.ThreadPool.LoadAverage5(*)
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Thread pool name. Possible options: MAIN, AGENT, POLLERS, SCHEDULER
2. optional Normalization flag. If it is set to 1, then the value is divided to max thread count.

Active request moving average of specified agent thread pool for last 5 minutes.

Agent.ThreadPool.LoadAverage15(*)
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Thread pool name. Possible options: MAIN, AGENT, POLLERS, SCHEDULER
2. optional Normalization flag. If it is set to 1, then the value is divided to max thread count.

Active request moving average load of specified agent thread pool for last 15 minutes.

Agent.ThreadPool.MaxSize(*)
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Thread pool name. Possible options: MAIN, AGENT, POLLERS, SCHEDULER
Maximum size of specified agent thread pool.

Agent.ThreadPool.MinSize(*)
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Thread pool name. Possible options: MAIN, AGENT, POLLERS, SCHEDULER
Maximum size of specified agent thread pool.

Agent.ThreadPool.Usage(*)
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Thread pool name. Possible options: MAIN, AGENT, POLLERS, SCHEDULER
Current usage of specified agent thread pool. The value is equal to current thread count divided by max thread count in
percent.

500 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Agent.TimedOutRequests
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Cumulative counter of timed out requests

Agent.UnsupportedRequests
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Cumulative counter of requests for unsupported metrics

Agent.Uptime
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Number of seconds since agent start

Agent.Version
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Agent’s version

Disk.Avail(*)
TODO

Disk.AvailPerc(*)
TODO

Disk.Free(*)
TODO

Disk.FreePerc(*)
TODO

Disk.Total(*)
TODO

Disk.Used(*)
TODO

46.8. List of supported metrics 501

NetXMS Administrator Guide, Release 5.2.0

Disk.UsedPerc(*)
TODO

File.Content(*)
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Path - it specifies path to file
Returns first line of file content (but no more then 255 characters). Only servers which are in MasterServers in agent
configuration file have access to this metric.
The following macros are supported in path and pattern parameters:

• Environment variables as ${ENV_VAR_NAME}
• strftime(3C) macros
• Text inside ` braces will be executed as a command and first line of output will be taken (only for servers which are
in MasterServers in agent configuration file)

File.Count(*)
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Path is the only mandatory argument. It specifies base directory for search.
2. Pattern - If pattern is given, only files whose names matched against it will be counted. Since version 3.8.314

it’s possible to invert the mask by prefixing this parameter with “!”. In this case files NOT maching the mask
will be counted.

3. Recursive - determines if agent should count files in subdirectories. To enable recursion, use values 1 or true.
4. Size filter. If parameter < 0, only files with size less than abs(value) will match. If parameter > 0, only files

with size greater than value will match.
5. Age filter. If parameter < 0, only files created after now - abs(value) will match. If parameter > 0, only files

created before now - value will match.
Number of files in directory
The following macros are supported in path and pattern parameters:

• Environment variables as ${ENV_VAR_NAME}
• strftime(3C) macros
• Text inside ` braces will be executed as a command and first line of output will be taken (only for servers which are
in MasterServers in agent configuration file)

File.FolderCount(*)
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

502 Chapter 46. Appendix

http://www.unix.com/man-page/opensolaris/3c/strftime/
http://www.unix.com/man-page/opensolaris/3c/strftime/

NetXMS Administrator Guide, Release 5.2.0

1. Path is the only mandatory argument. It specifies base directory for search.
2. Pattern - If pattern is given, only folders whose names matched against it will be counted.
3. Recursive - determines if agent should count folders in subdirectories. To enable recursion, use values 1 or

true.
4. Size filter. If parameter < 0, only folders with size less than abs(value) will match. If parameter > 0, only

folders with size greater than value will match.
5. Age filter. If parameter < 0, only folders created after now - abs(value) will match. If parameter > 0, only

folders created before now - value will match.
Number of folders in directory

File.Hash.CRC32(*)
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Path - it specifies path to file
CRC32 hash of given file
The following macros are supported in path parameter:

• Environment variables as ${ENV_VAR_NAME}
• strftime(3C) macros
• Text inside ` braces will be executed as a command and first line of output will be taken (only for servers which are
in MasterServers in agent configuration file)

File.Hash.MD5(*)
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Path - it specifies path to file
MD5 hash of given file
The following macros are supported in path parameter:

• Environment variables as ${ENV_VAR_NAME}
• strftime(3C) macros
• Text inside ` braces will be executed as a command and first line of output will be taken (only for servers which are
in MasterServers in agent configuration file)

File.Hash.SHA1(*)
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Path - it specifies path to file

46.8. List of supported metrics 503

http://www.unix.com/man-page/opensolaris/3c/strftime/
http://www.unix.com/man-page/opensolaris/3c/strftime/

NetXMS Administrator Guide, Release 5.2.0

SHA1 hash of given file
The following macros are supported in path parameter:

• Environment variables as ${ENV_VAR_NAME}
• strftime(3C) macros
• Text inside ` braces will be executed as a command and first line of output will be taken (only for servers which are
in MasterServers in agent configuration file)

File.Size(*)
Data type: Unsigned Integer 64-bit
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Path is the only mandatory argument. It specifies either single file or base directory for calculation.
2. If pattern is given, only files whose names matched against it will be counted.
3. Recursive determines if agent should count files in subdirectories. To enable recursion, use values 1 or true.
4. Size filter. If parameter < 0, only files with size less than abs(value) will match. If parameter > 0, only files

with size greater than value will match.
5. Age filter. If parameter < 0, only files created after now - abs(value) will match. If parameter > 0, only files

created before now - value will match.
Size in bytes of single file or all files in given directory.
The following macros are supported in path and pattern parameters:

• Environment variables as ${ENV_VAR_NAME}
• strftime(3C) macros
• Text inside ` braces will be executed as a command and first line of output will be taken (only for servers which are
in MasterServers in agent configuration file)

File.Time.Access(*)
Data type: Unsigned Integer 64-bit
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Path - it specifies path to file
File’s last access time in seconds since epoch (1 Jan 1970 00:00:00 UTC)
The following macros are supported in path parameter:

• Environment variables as ${ENV_VAR_NAME}
• strftime(3C) macros
• Text inside ` braces will be executed as a command and first line of output will be taken (only for servers which are
in MasterServers in agent configuration file)

504 Chapter 46. Appendix

http://www.unix.com/man-page/opensolaris/3c/strftime/
http://www.unix.com/man-page/opensolaris/3c/strftime/
http://www.unix.com/man-page/opensolaris/3c/strftime/

NetXMS Administrator Guide, Release 5.2.0

File.Time.Change(*)
Data type: Unsigned Integer 64-bit
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Path - it specifies path to file
File’s last status change time in seconds since epoch (1 Jan 1970 00:00:00 UTC)
The following macros are supported in path parameter:

• Environment variables as ${ENV_VAR_NAME}
• strftime(3C) macros
• Text inside ` braces will be executed as a command and first line of output will be taken (only for servers which are
in MasterServers in agent configuration file)

File.Time.Modify(*)
Data type: Unsigned Integer 64-bit
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Path - it specifies path to file
File’s last modification time in seconds since epoch (1 Jan 1970 00:00:00 UTC)
The following macros are supported in path parameter:

• Environment variables as ${ENV_VAR_NAME}
• strftime(3C) macros
• Text inside ` braces will be executed as a command and first line of output will be taken (only for servers which are
in MasterServers in agent configuration file)

File.Type(*)
Data type: Unsigned Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Path - it specifies path to file
Type of a file or directory. Returns one of the following values:

• 0 - file does not exist
• 1 - file is a directory
• 2 - file is a device
• 3 - file is a regular file
• 4 - file is of other type

The following macros are supported in path parameter:
• Environment variables as ${ENV_VAR_NAME}
• strftime(3C) macros

46.8. List of supported metrics 505

http://www.unix.com/man-page/opensolaris/3c/strftime/
http://www.unix.com/man-page/opensolaris/3c/strftime/
http://www.unix.com/man-page/opensolaris/3c/strftime/

NetXMS Administrator Guide, Release 5.2.0

• Text inside ` braces will be executed as a command and first line of output will be taken (only for servers which are
in MasterServers in agent configuration file)

FileSystem.Avail(*)
Data type: Unsigned Integer 64-bit
Supported Platforms: Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Mountpoint, device name (linux only) or disk name (for Windows)
Available space on file system in bytes

FileSystem.AvailInodes(*)
TODO

FileSystem.AvailInodesPerc(*)
TODO

FileSystem.AvailPerc(*)
Data type: Float
Supported Platforms: Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Mountpoint, device name (linux only) or disk name (for Windows)
Percentage of available space on file system

FileSystem.Free(*)
Data type: Unsigned Integer 64-bit
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Mountpoint, device name (linux only) or disk name (for Windows)
Free space on file system in bytes

FileSystem.FreeInodes(*)
TODO

FileSystem.FreeInodesPerc(*)
TODO

FileSystem.FreePerc(*)
Data type: Float
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

506 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

1. Mountpoint, device name (linux only) or disk name (for Windows)
Percentage of free space on file system

FileSystem.Total(*)
Data type: Unsigned Integer 64-bit
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Mountpoint, device name (linux only) or disk name (for Windows)
Total number of bytes on file system

FileSystem.TotalInodes(*)
TODO

FileSystem.Type(*)
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Mountpoint or disk name (for Windows)
Type of file system

FileSystem.Used(*)
Data type: Unsigned Integer 64-bit
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Mountpoint, device name (linux only) or disk name (for Windows)
Used space on file system in bytes

FileSystem.UsedInodes(*)
TODO

FileSystem.UsedInodesPerc(*)
TODO

FileSystem.UsedPerc(*)
Data type: Float
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Mountpoint, device name (linux only) or disk name (for Windows)
Percentage of used space on file system

46.8. List of supported metrics 507

NetXMS Administrator Guide, Release 5.2.0

DRBD.ConnState(*)
TODO

DRBD.DataState(*)
TODO

DRBD.DeviceState(*)
TODO

DRBD.PeerDataState(*)
TODO

DRBD.PeerDeviceState(*)
TODO

DRBD.Protocol(*)
TODO

DRBD.Version.API
TODO

DRBD.Version.Driver
TODO

DRBD.Version.Protocol
TODO

Hardware.Baseboard.Manufacturer
TODO

Hardware.Baseboard.Product
TODO

Hardware.Baseboard.SerialNumber
TODO

Hardware.Baseboard.Type
TODO

Hardware.Baseboard.Version
TODO

508 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Hardware.Battery.Capacity(*)
TODO

Hardware.Battery.Chemistry(*)
TODO

Hardware.Battery.Location(*)
TODO

Hardware.Battery.ManufactureDate(*)
TODO

Hardware.Battery.Manufacturer(*)
TODO

Hardware.Battery.Name(*)
TODO

Hardware.Battery.SerialNumber(*)
TODO

Hardware.Battery.Voltage(*)
TODO

Hardware.MemoryDevice.Bank(*)
TODO

Hardware.MemoryDevice.ConfiguredSpeed(*)
TODO

Hardware.MemoryDevice.FormFactor(*)
TODO

Hardware.MemoryDevice.Location(*)
TODO

Hardware.MemoryDevice.Manufacturer(*)
TODO

Hardware.MemoryDevice.MaxSpeed(*)
TODO

46.8. List of supported metrics 509

NetXMS Administrator Guide, Release 5.2.0

Hardware.MemoryDevice.PartNumber(*)
TODO

Hardware.MemoryDevice.SerialNumber(*)
TODO

Hardware.MemoryDevice.Size(*)
TODO

Hardware.MemoryDevice.Type(*)
TODO

Hardware.Processor.Cores(*)
TODO

Hardware.Processor.CurrentSpeed(*)
TODO

Hardware.Processor.Family(*)
TODO

Hardware.Processor.Manufacturer(*)
TODO

Hardware.Processor.MaxSpeed(*)
TODO

Hardware.Processor.PartNumber(*)
TODO

Hardware.Processor.SerialNumber(*)
TODO

Hardware.Processor.Socket(*)
TODO

Hardware.Processor.Threads(*)
TODO

Hardware.Processor.Type(*)
TODO

510 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Hardware.Processor.Version(*)
TODO

Hardware.System.MachineId
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD
Unique machine identifier.

Hardware.System.Manufacturer
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD
System manufacturer.

Hardware.System.Product
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD
Product name.

Hardware.System.ProductCode
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD
Product code.

Hardware.System.SerialNumber
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD
System serial number.

Hardware.System.Version
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD
System version.

Hardware.WakeUpEvent
TODO

Hypervisor.Type
TODO

46.8. List of supported metrics 511

NetXMS Administrator Guide, Release 5.2.0

Hypervisor.Version
TODO

Net.Interface.AdminStatus(*)
Data type: Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Interface name or interface index. Index can be obtained from Net.InterfaceList list.
Network interface administrative status (1 = enabled, 2 = disabled, 3 = testing)

Net.Interface.BytesIn(*)
Data type: Counter32
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Interface name or interface index. Index can be obtained from Net.InterfaceList list.
Number of input bytes on interface

Net.Interface.BytesIn64(*)
Data type: Counter64
Supported Platforms: Windows, Linux, FreeBSD
Parameters:

1. Interface name or interface index. Index can be obtained from Net.InterfaceList list.
Number of input bytes on interface

Net.Interface.BytesOut(*)
Data type: Counter32
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Interface name or interface index. Index can be obtained from Net.InterfaceList list.
Number of output bytes on interface

Net.Interface.BytesOut64(*)
Data type: Counter64
Supported Platforms: Windows, Linux, FreeBSD
Parameters:

1. Interface name or interface index. Index can be obtained from Net.InterfaceList list.
Number of output bytes on interface

512 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Net.Interface.Description(*)
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX
Parameters:

1. Interface name or interface index. Index can be obtained from Net.InterfaceList list.
Description of interface

Net.Interface.InErrors(*)
Data type: Counter32
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Interface name or interface index. Index can be obtained from Net.InterfaceList list.
Number of input errors on interface

Net.Interface.InErrors64(*)
Data type: Counter64
Supported Platforms: Windows, Linux, FreeBSD
Parameters:

1. Interface name or interface index. Index can be obtained from Net.InterfaceList list.
Number of input errors on interface

Net.Interface.Link(*)
Data type: Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Interface name or interface index. Index can be obtained from Net.InterfaceList list.
Link status of interface

Net.Interface.MTU(*)
Data type: Integer
Supported Platforms: Windows, AIX, HP-UX
Parameters:

1. Interface name or interface index. Index can be obtained from Net.InterfaceList list.

Net.Interface.OperStatus(*)
Data type: Integer
Supported Platforms: Windows, Linux, Solaris, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

46.8. List of supported metrics 513

NetXMS Administrator Guide, Release 5.2.0

1. Interface name or interface index. Index can be obtained from Net.InterfaceList list.
Network interface operational status (0 = down, 1 = up)

Net.Interface.OutErrors(*)
Data type: Counter32
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Interface name or interface index. Index can be obtained from Net.InterfaceList list.
Number of output errors on interface

Net.Interface.OutErrors64(*)
Data type: Counter64
Supported Platforms: Windows, Linux, FreeBSD
Parameters:

1. Interface name or interface index. Index can be obtained from Net.InterfaceList list.
Number of output errors on interface

Net.Interface.PacketsIn(*)
Data type: Counter32
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Interface name or interface index. Index can be obtained from Net.InterfaceList list.
Number of input packets on interface

Net.Interface.PacketsIn64(*)
Data type: Counter64
Supported Platforms: Windows, Linux, FreeBSD
Parameters:

1. Interface name or interface index. Index can be obtained from Net.InterfaceList list.
Number of input packets on interface

Net.Interface.PacketsOut(*)
Data type: Counter32
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Interface name or interface index. Index can be obtained from Net.InterfaceList list.
Number of output packets on interface

514 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Net.Interface.PacketsOut64(*)
Data type: Counter64
Supported Platforms: Windows, Linux, FreeBSD
Parameters:

1. Interface name or interface index. Index can be obtained from Net.InterfaceList list.
Number of output packets on interface

Net.Interface.Speed(*)
Current interface working speed in bits per second.
Data type: UInt32
Supported Platforms: Windows, Linux, FreeBSD, Solaris, AIX, HP-UX
Parameters:

1. Interface name or interface index. Index can be obtained from Net.InterfaceList list.

Net.IP.Forwarding
Data type: Int32
Supported Platforms: Windows, Linux, HP-UX, FreeBSD, NetBSD, OpenBSD
IP forwarding status (1 = forwarding, 0 = not forwarding)

Net.IP6.Forwarding
Data type: Int32
Supported Platforms: Linux, HP-UX, FreeBSD, NetBSD, OpenBSD
IPv6 forwarding status (1 = forwarding, 0 = not forwarding)

Net.IP.NextHop(*)
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Next hop for given destination address according to host’s routing table

Net.RemoteShareStatus(*)
Data type: Int32
Supported Platforms: Windows
Parameters:

1. Correct UNC path
2. Domain
3. Login
4. Password

Status of remote shared resource

46.8. List of supported metrics 515

NetXMS Administrator Guide, Release 5.2.0

Net.RemoteShareStatusText(*)
Data type: String
Supported Platforms: Windows
Parameters:

1. Correct UNC path
2. Domain
3. Login
4. Password

Status of remote shared resource as text

Net.Resolver.AddressByName(*)
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Name to resolve
Resolves host name to IP address

Net.Resolver.NameByAddress(*)
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Address to resolve
Resolves IP address to host name

PDH.CounterValue(*)
Data type: UInt32
Supported Platforms: Windows
Parameters:

1. Counter path. It should start with single backslash character and not include machine name.
2. Optional second argument specifies if counter requires two samples to calculate value (typical example of

such counters is CPU utilization). Two samples will be taken if this argument is set to 1.
Current value of given PDH counter.

PDH.Version
Data type: UInt32
Supported Platforms: Windows
Version of PDH.DLL (as returned by PdhGetDllVersion() call).

516 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

PhysicalDisk.Capacity(*)
Data type: Unsigned Integer 64-bit
Supported Platforms: Linux, Windows
Parameters:

1. Physical disk name. Run smartctl --scan (on Linux) or C:\NetXMS\bin\smartctl.exe --scan

(on Windows) to see list of available disk names.
Capacity in bytes of provided hard disk.

PhysicalDisk.DeviceType(*)
Data type: String
Supported Platforms: Linux, Windows
Parameters:

1. Physical disk name
Device type of provided hard disk.

PhysicalDisk.Firmware(*)
Data type: String
Supported Platforms: Linux, Windows
Parameters:

1. Physical disk name
Firmware version of provided hard disk.

PhysicalDisk.Model(*)
Data type: String
Supported Platforms: Linux, Windows
Parameters:

1. Physical disk name
Model of provided hard disk.

PhysicalDisk.PowerCycles(*)
Data type: Unsigned integer
Supported Platforms: Linux, Windows
Parameters:

1. Physical disk name
Number of power cycles of provided hard disk.

46.8. List of supported metrics 517

NetXMS Administrator Guide, Release 5.2.0

PhysicalDisk.PowerOnTime(*)
Data type: Unsigned integer
Supported Platforms: Linux, Windows
Parameters:

1. Physical disk name
Power on time of provided hard disk.

PhysicalDisk.SerialNumber(*)
Data type: String
Supported Platforms: Linux, Windows
Parameters:

1. Physical disk name
Serial number of provided hard disk.

PhysicalDisk.SmartAttr(*)
Data type: String
Supported Platforms: Linxu, Windows
Parameters:

1. Physical disk name
2. SMART attribute name

PhysicalDisk.SmartStatus(*)
Data type: Integer
Supported Platforms: Linux, Windows
Parameters:

1. Physical disk name
Status of provided hard disk reported by SMART.

PhysicalDisk.Temperature(*)
Data type: Integer
Supported Platforms: Linux, Windows
Parameters:

1. Physical disk name
Temperature of provided hard disk.

518 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Process.Count(*)
Data type: Int32
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Process name
Number of processes with given name

Process.CountEx(*)
Data type: Int32
Supported Platforms: Windows, Linux, Solaris, FreeBSD, NetBSD, AIX
Parameters:

1. Process name.
2. Optional parameter that accepts process’s command line regular expression, that should match cmd argument.

If not set it means “match any”.
3. Optional parameter that accepts process’s owner username regular expression. If not set it means “match

any”.
4. Optional parameter that accepts process’s main window title regular expression. If not set it means “match

any”. Process’s window title can be checked only on Windows platform.
Number of processes matching filter

Process.CPUTime(*)
Data type: Counter64
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD
Parameters:

1. Process name
2. Function - is the function that is used to measure data in case if there are more than one process with given

name. By default it is used sum function. This parameter can have this options:
• min - minimal value among all processes named proc
• max - maximal value among all processes named proc
• avg - average value for all processes named proc
• sum - sum of values for all processes named proc

3. Optional parameter that accepts process’s command line regular expression, that should match cmd argument.
If not set it means “match any”.

4. Optional parameter that accepts process’s owner username regular expression. If not set it means “match
any”.

5. Optional parameter that accepts process’s main window title regular expression. If not set it means “match
any”. Process’s window title can be checked only on Windows platform.

Total execution time for process

46.8. List of supported metrics 519

NetXMS Administrator Guide, Release 5.2.0

Process.GDIObjects(*)
Data type: Unsigned Integer 64-bit
Supported Platforms: Windows
Parameters:

1. Process name
2. Function - is the function that is used to measure data in case if there are more than one process with given

name. By default it is used sum function. This parameter can have this options:
• min - minimal value among all processes named proc
• max - maximal value among all processes named proc
• avg - average value for all processes named proc
• sum - sum of values for all processes named proc

3. Optional parameter that accepts process’s command line regular expression, that should match cmd argument.
If not set it means “match any”.

4. Optional parameter that accepts process’s main window title regular expression. If not set it means “match
any”. Process’s window title can be checked only on Windows platform.

GDI objects used by process

Process.Handles(*)
Data type: Int32
Supported Platforms: Windows, Linux, Solaris, AIX
Parameters:

1. Process name
2. Function - is the function that is used to measure data in case if there are more than one process with given

name. By default it is used sum function. This parameter can have this options:
• min - minimal value among all processes named proc
• max - maximal value among all processes named proc
• avg - average value for all processes named proc
• sum - sum of values for all processes named proc

3. Optional parameter that accepts process’s command line regular expression, that should match cmd argument.
If not set it means “match any”.

4. Optional parameter that accepts process’s owner username regular expression. If not set it means “match
any”.

5. Optional parameter that accepts process’s main window title regular expression. If not set it means “match
any”. Process’s window title can be checked only on Windows platform.

Number of handles in process with given name

520 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Process.IO.OtherB(*)
Data type: Unsigned Integer 64-bit
Supported Platforms: Windows
Parameters:

1. Process name
2. Function - is the function that is used to measure data in case if there are more than one process with given

name. By default it is used sum function. This parameter can have this options:
• min - minimal value among all processes named proc
• max - maximal value among all processes named proc
• avg - average value for all processes named proc
• sum - sum of values for all processes named proc

3. Optional parameter that accepts process’s command line regular expression, that should match cmd argument.
If not set it means “match any”.

4. Optional parameter that accepts process’s main window title regular expression. If not set it means “match
any”. Process’s window title can be checked only on Windows platform.

Process.IO.OtherOp(*)
Data type: Unsigned Integer 64-bit
Supported Platforms: Windows
Parameters:

1. Process name
2. Function - is the function that is used to measure data in case if there are more than one process with given

name. By default it is used sum function. This parameter can have this options:
• min - minimal value among all processes named proc
• max - maximal value among all processes named proc
• avg - average value for all processes named proc
• sum - sum of values for all processes named proc

3. Optional parameter that accepts process’s command line regular expression, that should match cmd argument.
If not set it means “match any”.

4. Optional parameter that accepts process’s main window title regular expression. If not set it means “match
any”. Process’s window title can be checked only on Windows platform.

Process.IO.ReadB(*)
Data type: Unsigned Integer 64-bit
Supported Platforms: Windows
Parameters:

1. Process name
2. Function - is the function that is used to measure data in case if there are more than one process with given

name. By default it is used sum function. This parameter can have this options:

46.8. List of supported metrics 521

NetXMS Administrator Guide, Release 5.2.0

• min - minimal value among all processes named proc
• max - maximal value among all processes named proc
• avg - average value for all processes named proc
• sum - sum of values for all processes named proc

3. Optional parameter that accepts process’s command line regular expression, that should match cmd argument.
If not set it means “match any”.

4. Optional parameter that accepts process’s main window title regular expression. If not set it means “match
any”. Process’s window title can be checked only on Windows platform.

Process.IO.ReadOp(*)
Data type: Unsigned Integer 64-bit
Supported Platforms: Windows, AIX, HP-UX
Parameters:

1. Process name
2. Function - is the function that is used to measure data in case if there are more than one process with given

name. By default it is used sum function. This parameter can have this options:
• min - minimal value among all processes named proc
• max - maximal value among all processes named proc
• avg - average value for all processes named proc
• sum - sum of values for all processes named proc

3. Optional parameter that accepts process’s command line regular expression, that should match cmd argument.
If not set it means “match any”.

4. Optional parameter that accepts process’s main window title regular expression. If not set it means “match
any”. Process’s window title can be checked only on Windows platform.

Process.IO.WriteB(*)
Data type: Unsigned Integer 64-bit
Supported Platforms: Windows
Parameters:

1. Process name
2. Function - is the function that is used to measure data in case if there are more than one process with given

name. By default it is used sum function. This parameter can have this options:
• min - minimal value among all processes named proc
• max - maximal value among all processes named proc
• avg - average value for all processes named proc
• sum - sum of values for all processes named proc

3. Optional parameter that accepts process’s command line regular expression, that should match cmd argument.
If not set it means “match any”.

4. Optional parameter that accepts process’s main window title regular expression. If not set it means “match
any”. Process’s window title can be checked only on Windows platform.

522 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Process.IO.WriteOp(*)
Data type: Unsigned Integer 64-bit
Supported Platforms: Windows, AIX, HP-UX
Parameters:

1. Process name
2. Function - is the function that is used to measure data in case if there are more than one process with given

name. By default it is used sum function. This parameter can have this options:
• min - minimal value among all processes named proc
• max - maximal value among all processes named proc
• avg - average value for all processes named proc
• sum - sum of values for all processes named proc

3. Optional parameter that accepts process’s command line regular expression, that should match cmd argument.
If not set it means “match any”.

4. Optional parameter that accepts process’s main window title regular expression. If not set it means “match
any”. Process’s window title can be checked only on Windows platform.

Process.KernelTime(*)
Data type: Counter64
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, NetBSD
Parameters:

1. Process name
2. Function - is the function that is used to measure data in case if there are more than one process with given

name. By default it is used sum function. This parameter can have this options:
• min - minimal value among all processes named proc
• max - maximal value among all processes named proc
• avg - average value for all processes named proc
• sum - sum of values for all processes named proc

3. Optional parameter that accepts process’s command line regular expression, that should match cmd argument.
If not set it means “match any”.

4. Optional parameter that accepts process’s owner username regular expression. If not set it means “match
any”.

5. Optional parameter that accepts process’s main window title regular expression. If not set it means “match
any”. Process’s window title can be checked only on Windows platform.

Total execution time in kernel mode for process

Process.MemoryUsage(*)
Data type: Float
Supported Platforms: Windows, Linux, Solaris, AIX, FreeBSD
Parameters:

46.8. List of supported metrics 523

NetXMS Administrator Guide, Release 5.2.0

1. Process name
2. Function - is the function that is used to measure data in case if there are more than one process with given

name. By default it is used sum function. This parameter can have this options:
• min - minimal value among all processes named proc
• max - maximal value among all processes named proc
• avg - average value for all processes named proc
• sum - sum of values for all processes named proc

3. Optional parameter that accepts process’s command line regular expression, that should match cmd argument.
If not set it means “match any”.

4. Optional parameter that accepts process’s owner username regular expression. If not set it means “match
any”.

5. Optional parameter that accepts process’s main window title regular expression. If not set it means “match
any”. Process’s window title can be checked only on Windows platform.

Percentage of total physical memory used by process

Process.PageFaults(*)
Data type: Counter64
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, NetBSD
Parameters:

1. Process name
2. Function - is the function that is used to measure data in case if there are more than one process with given

name. By default it is used sum function. This parameter can have this options:
• min - minimal value among all processes named proc
• max - maximal value among all processes named proc
• avg - average value for all processes named proc
• sum - sum of values for all processes named proc

3. Optional parameter that accepts process’s command line regular expression, that should match cmd argument.
If not set it means “match any”.

4. Optional parameter that accepts process’s owner username regular expression. If not set it means “match
any”.

5. Optional parameter that accepts process’s main window title regular expression. If not set it means “match
any”. Process’s window title can be checked only on Windows platform.

Page faults for process

Process.RSS(*)
Alias to Process.WkSet(*)

524 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Process.Syscalls(*)
Data type: UInt64
Supported Platforms: Solaris
Parameters:

1. Process name
2. Function - is the function that is used to measure data in case if there are more than one process with given

name. By default it is used sum function. This parameter can have this options:
• min - minimal value among all processes named proc
• max - maximal value among all processes named proc
• avg - average value for all processes named proc
• sum - sum of values for all processes named proc

3. Optional parameter that accepts process’s command line regular expression, that should match cmd argument.
If not set it means “match any”.

4. Optional parameter that accepts process’s main window title regular expression. If not set it means “match
any”. Process’s window title can be checked only on Windows platform.

Number of system calls made by process

Process.Threads(*)
Data type: Int32
Supported Platforms: Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD
Parameters:

1. Process name
2. Function - is the function that is used to measure data in case if there are more than one process with given

name. By default it is used sum function. This parameter can have this options:
• min - minimal value among all processes named proc
• max - maximal value among all processes named proc
• avg - average value for all processes named proc
• sum - sum of values for all processes named proc

3. Optional parameter that accepts process’s command line regular expression, that should match cmd argument.
If not set it means “match any”.

4. Optional parameter that accepts process’s owner username regular expression. If not set it means “match
any”.

5. Optional parameter that accepts process’s main window title regular expression. If not set it means “match
any”. Process’s window title can be checked only on Windows platform.

Number of threads in process

46.8. List of supported metrics 525

NetXMS Administrator Guide, Release 5.2.0

Process.UserObjects(*)
Data type: UInt64
Supported Platforms: Windows
Parameters:

1. Process name
2. Function - is the function that is used to measure data in case if there are more than one process with given

name. By default it is used sum function. This parameter can have this options:
• min - minimal value among all processes named proc
• max - maximal value among all processes named proc
• avg - average value for all processes named proc
• sum - sum of values for all processes named proc

3. Optional parameter that accepts process’s command line regular expression, that should match cmd argument.
If not set it means “match any”.

4. Optional parameter that accepts process’s main window title regular expression. If not set it means “match
any”. Process’s window title can be checked only on Windows platform.

USER objects used by process

Process.UserTime(*)
Data type: Counter64
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, NetBSD
Parameters:

1. Process name
2. Function - is the function that is used to measure data in case if there are more than one process with given

name. By default it is used sum function. This parameter can have this options:
• min - minimal value among all processes named proc
• max - maximal value among all processes named proc
• avg - average value for all processes named proc
• sum - sum of values for all processes named proc

3. Optional parameter that accepts process’s command line regular expression, that should match cmd argument.
If not set it means “match any”.

4. Optional parameter that accepts process’s owner username regular expression. If not set it means “match
any”.

5. Optional parameter that accepts process’s main window title regular expression. If not set it means “match
any”. Process’s window title can be checked only on Windows platform.

Total execution time in user mode for process

526 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Process.VMRegions(*)
Data type: Int32
Supported Platforms: Linux
Parameters:

1. Process name
2. Function - is the function that is used to measure data in case if there are more than one process with given

name. By default it is used sum function. This parameter can have this options:
• min - minimal value among all processes named proc
• max - maximal value among all processes named proc
• avg - average value for all processes named proc
• sum - sum of values for all processes named proc

3. Optional parameter that accepts process’s command line regular expression, that should match cmd argument.
If not set it means “match any”.

4. Optional parameter that accepts process’s owner username regular expression. If not set it means “match
any”.

5. Optional parameter that accepts process’s main window title regular expression. If not set it means “match
any”. Process’s window title can be checked only on Windows platform.

Number of mapped virtual memory regions within process with given name

Process.VMSize(*)
Data type: Int64
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD
Parameters:

1. Process name
2. Function - is the function that is used to measure data in case if there are more than one process with given

name. By default it is used sum function. This parameter can have this options:
• min - minimal value among all processes named proc
• max - maximal value among all processes named proc
• avg - average value for all processes named proc
• sum - sum of values for all processes named proc

3. Optional parameter that accepts process’s command line regular expression, that should match cmd argument.
If not set it means “match any”.

4. Optional parameter that accepts process’s owner username regular expression. If not set it means “match
any”.

5. Optional parameter that accepts process’s main window title regular expression. If not set it means “match
any”. Process’s window title can be checked only on Windows platform.

Virtual memory used by process

46.8. List of supported metrics 527

NetXMS Administrator Guide, Release 5.2.0

Process.WkSet(*)
Data type: Int64
Supported Platforms: Windows, Linux, Solaris, HP-UX, FreeBSD, NetBSD
Parameters:

1. Process name
2. Function - is the function that is used to measure data in case if there are more than one process with given

name. By default it is used sum function. This parameter can have this options:
• min - minimal value among all processes named proc
• max - maximal value among all processes named proc
• avg - average value for all processes named proc
• sum - sum of values for all processes named proc

3. Optional parameter that accepts process’s command line regular expression, that should match cmd argument.
If not set it means “match any”.

4. Optional parameter that accepts process’s owner username regular expression. If not set it means “match
any”.

5. Optional parameter that accepts process’s main window title regular expression. If not set it means “match
any”. Process’s window title can be checked only on Windows platform.

Physical memory used by process

System.AppAddressSpace
Data type: UInt32
Supported Platforms: Windows
Address space available to applications (MB)

System.BIOS.Date
Data type: String
Supported Platforms: Windows, Linux, Solaris, FreeBSD
BIOS date.

System.BIOS.Vendor
Data type: String
Supported Platforms: Windows, Linux, Solaris, FreeBSD
BIOS vendor.

System.BIOS.Version
Data type: String
Supported Platforms: Windows, Linux, Solaris, FreeBSD
BIOS version.

528 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

System.ConnectedUsers
Data type: Int32
Supported Platforms: Windows, Linux
Number of users connected to system

System.CPU.Count
Data type: Int32
Supported Platforms: Windows, Linux, Solaris, AIX, FreeBSD, NetBSD, OpenBSD, MacOS
Number of CPUs in the system

System.CPU.LoadAvg
Data type: Float
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD, MacOS
CPU load average for last minute

Note

On Windows this metric is provided by winperf subagent

System.CPU.LoadAvg5
Data type: Float
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD, MacOS
CPU load average for last 5 minutes

Note

On Windows this metric is provided by winperf subagent

System.CPU.LoadAvg15
Data type: Float
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD, MacOS
CPU load average for last 15 minutes

Note

On Windows this metric is provided by winperf subagent

System.CPU.Usage
Data type: Float
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, MacOS

46.8. List of supported metrics 529

NetXMS Administrator Guide, Release 5.2.0

Average CPU usage for last minute (percents, all CPUs)

Note

On Windows this metric is provided by winperf subagent

System.CPU.Usage(*)
Data type: Float
Supported Platforms: Windows, Linux, Solaris, AIX, MacOS
Parameters:

1. Zero-based index of CPU.
Average CPU usage for last minute (percents, specific CPU)

Note

On Windows this metric is provided by winperf subagent

System.CPU.Usage5
Data type: Float
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, MacOS
Average CPU usage for last 5 minutes (percents, all CPUs)

Note

On Windows this metric is provided by winperf subagent

System.CPU.Usage5(*)
Data type: Float
Supported Platforms: Windows, Linux, Solaris, AIX, MacOS
Parameters:

1. Zero-based index of CPU.
Average CPU usage for last 5 minutes (percents, specific CPU)

Note

On Windows this metric is provided by winperf subagent

System.CPU.Usage15
Data type: Float
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, MacOS
Average CPU usage for last 15 minutes (percents, all CPUs)

530 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Note

On Windows this metric is provided by winperf subagent

System.CPU.Usage15(*)
Data type: Float
Supported Platforms: Windows, Linux, Solaris, AIX, MacOS
Parameters:

1. Zero-based index of CPU.
Average CPU usage for last 15 minutes (percents, specific CPU)

Note

On Windows this metric is provided by winperf subagent

System.CPU.Usage.Idle
Data type: Float
Supported Platforms: Linux, AIX, MacOS
Average CPU usage (IDLE) for last minute (percents, all CPUs)

System.CPU.Usage.Idle(*)
Data type: Float
Supported Platforms: Linux, AIX, MacOS
Parameters:

1. Zero-based index of CPU.
Average CPU usage (IDLE) for last minute (percents, specific CPU)

System.CPU.Usage5.Idle
Data type: Float
Supported Platforms: Linux, AIX, MacOS
Average CPU usage (IDLE) for last 5 minutes (percents, all CPUs)

System.CPU.Usage5.Idle(*)
Data type: Float
Supported Platforms: Linux, AIX, MacOS
Parameters:

1. Zero-based index of CPU.
Average CPU usage (IDLE) for last 5 minutes (percents, specific CPU)

46.8. List of supported metrics 531

NetXMS Administrator Guide, Release 5.2.0

System.CPU.Usage15.Idle
Data type: Float
Supported Platforms: Linux, AIX, MacOS
Average CPU usage (IDLE) for last 15 minutes (percents, all CPUs)

System.CPU.Usage15.Idle(*)
Data type: Float
Supported Platforms: Linux, AIX, MacOS
Parameters:

1. Zero-based index of CPU.
Average CPU usage (IDLE) for last 15 minutes (percents, specific CPU)

System.CPU.Usage.IOWait
Data type: Float
Supported Platforms: Linux, AIX
Average CPU usage (IOWAIT) for last minute (percents, all CPUs)

System.CPU.Usage.IOWait(*)
Data type: Float
Supported Platforms: Linux, AIX
Parameters:

1. Zero-based index of CPU.
Average CPU usage (IOWAIT) for last minute (percents, specific CPU)

System.CPU.Usage5.IOWait
Data type: Float
Supported Platforms: Linux, AIX
Average CPU usage (IOWAIT) for last 5 minutes (percents, all CPUs)

System.CPU.Usage5.IOWait(*)
Data type: Float
Supported Platforms: Linux, AIX
Parameters:

1. Zero-based index of CPU.
Average CPU usage (IOWAIT) for last 5 minutes (percents, specific CPU)

532 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

System.CPU.Usage15.IOWait
Data type: Float
Supported Platforms: Linux, AIX
Average CPU usage (IOWAIT) for last 15 minutes (percents, all CPUs)

System.CPU.Usage15.IOWait(*)
Data type: Float
Supported Platforms: Linux, AIX
Parameters:

1. Zero-based index of CPU.
Average CPU usage (IOWAIT) for last 15 minutes (percents, specific CPU)

System.CPU.Usage.IRQ
Data type: Float
Supported Platforms: Linux
Average CPU usage (IRQ) for last minute (percents, all CPUs)

System.CPU.Usage.IRQ(*)
Data type: Float
Supported Platforms: Linux
Parameters:

1. Zero-based index of CPU.
Average CPU usage (IRQ) for last minute (percents, specific CPU)

System.CPU.Usage5.IRQ
Data type: Float
Supported Platforms: Linux
Average CPU usage (IRQ) for last 5 minutes (percents, all CPUs)

System.CPU.Usage5.IRQ(*)
Data type: Float
Supported Platforms: Linux
Parameters:

1. Zero-based index of CPU.
Average CPU usage (IRQ) for last 5 minutes (percents, specific CPU)

46.8. List of supported metrics 533

NetXMS Administrator Guide, Release 5.2.0

System.CPU.Usage15.IRQ
Data type: Float
Supported Platforms: Linux
Average CPU usage (IRQ) for last 15 minutes (percents, all CPUs)

System.CPU.Usage15.IRQ(*)
Data type: Float
Supported Platforms: Linux
Parameters:

1. Zero-based index of CPU.
Average CPU usage (IRQ) for last 15 minutes (percents, specific CPU)

System.CPU.Usage.Nice
Data type: Float
Supported Platforms: Linux, MacOS
Average CPU usage (NICE) for last minute (percents, all CPUs)

System.CPU.Usage.Nice(*)
Data type: Float
Supported Platforms: Linux, MacOS
Parameters:

1. Zero-based index of CPU.
Average CPU usage (NICE) for last minute (percents, specific CPU)

System.CPU.Usage5.Nice
Data type: Float
Supported Platforms: Linux, MacOS
Average CPU usage (NICE) for last 5 minutes (percents, all CPUs)

System.CPU.Usage5.Nice(*)
Data type: Float
Supported Platforms: Linux, MacOS
Parameters:

1. Zero-based index of CPU.
Average CPU usage (NICE) for last 5 minutes (percents, specific CPU)

534 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

System.CPU.Usage15.Nice
Data type: Float
Supported Platforms: Linux, MacOS
Average CPU usage (NICE) for last 15 minutes (percents, all CPUs)

System.CPU.Usage15.Nice(*)
Data type: Float
Supported Platforms: Linux, MacOS
Parameters:

1. Zero-based index of CPU.
Average CPU usage (NICE) for last 15 minutes (percents, specific CPU)

System.CPU.Usage.SoftIRQ
Data type: Float
Supported Platforms: Linux
Average CPU usage (SOFTIRQ) for last minute (percents, all CPUs)

System.CPU.Usage.SoftIRQ(*)
Data type: Float
Supported Platforms: Linux
Parameters:

1. Zero-based index of CPU.
Average CPU usage (SOFTIRQ) for last minute (percents, specific CPU)

System.CPU.Usage5.SoftIRQ
Data type: Float
Supported Platforms: Linux
Average CPU usage (SOFTIRQ) for last 5 minutes (percents, all CPUs)

System.CPU.Usage5.SoftIRQ(*)
Data type: Float
Supported Platforms: Linux
Parameters:

1. Zero-based index of CPU.
Average CPU usage (SOFTIRQ) for last 5 minutes (percents, specific CPU)

46.8. List of supported metrics 535

NetXMS Administrator Guide, Release 5.2.0

System.CPU.Usage15.SoftIRQ
Data type: Float
Supported Platforms: Linux
Average CPU usage (SOFTIRQ) for last 15 minutes (percents, all CPUs)

System.CPU.Usage15.SoftIRQ(*)
Data type: Float
Supported Platforms: Linux
Parameters:

1. Zero-based index of CPU.
Average CPU usage (SOFTIRQ) for last 15 minutes (percents, specific CPU)

System.CPU.Usage.Steal
Data type: Float
Supported Platforms: Linux
Average CPU usage (STEAL) for last minute (percents, all CPUs)

System.CPU.Usage.Steal(*)
Data type: Float
Supported Platforms: Linux
Parameters:

1. Zero-based index of CPU.
Average CPU usage (STEAL) for last minute (percents, specific CPU)

System.CPU.Usage5.Steal
Data type: Float
Supported Platforms: Linux
Average CPU usage (STEAL) for last 5 minutes (percents, all CPUs)

System.CPU.Usage5.Steal(*)
Data type: Float
Supported Platforms: Linux
Parameters:

1. Zero-based index of CPU.
Average CPU usage (STEAL) for last 5 minutes (percents, specific CPU)

536 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

System.CPU.Usage15.Steal
Data type: Float
Supported Platforms: Linux
Average CPU usage (STEAL) for last 15 minutes (percents, all CPUs)

System.CPU.Usage15.Steal(*)
Data type: Float
Supported Platforms: Linux
Parameters:

1. Zero-based index of CPU.
Average CPU usage (STEAL) for last 15 minutes (percents, specific CPU)

System.CPU.Usage.System
Data type: Float
Supported Platforms: Linux, AIX, MacOS
Average CPU usage (SYSTEM) for last minute (percents, all CPUs)

System.CPU.Usage.System(*)
Data type: Float
Supported Platforms: Linux, AIX, MacOS
Parameters:

1. Zero-based index of CPU.
Average CPU usage (SYSTEM) for last minute (percents, specific CPU)

System.CPU.Usage5.System
Data type: Float
Supported Platforms: Linux, AIX, MacOS
Average CPU usage (SYSTEM) for last 5 minutes (percents, all CPUs)

System.CPU.Usage5.System(*)
Data type: Float
Supported Platforms: Linux, AIX, MacOS
Parameters:

1. Zero-based index of CPU.
Average CPU usage (SYSTEM) for last 5 minutes (percents, specific CPU)

46.8. List of supported metrics 537

NetXMS Administrator Guide, Release 5.2.0

System.CPU.Usage15.System
Data type: Float
Supported Platforms: Linux, AIX, MacOS
Average CPU usage (SYSTEM) for last 15 minutes (percents, all CPUs)

System.CPU.Usage15.System(*)
Data type: Float
Supported Platforms: Linux, AIX, MacOS
Parameters:

1. Zero-based index of CPU.
Average CPU usage (SYSTEM) for last 15 minutes (percents, specific CPU)

System.CPU.Usage.User
Data type: Float
Supported Platforms: Linux, AIX, MacOS
Average CPU usage (USER) for last minute (percents, all CPUs)

System.CPU.Usage.User(*)
Data type: Float
Supported Platforms: Linux, AIX, MacOS
Parameters:

1. Zero-based index of CPU.
Average CPU usage (USER) for last minute (percents, specific CPU)

System.CPU.Usage5.User
Data type: Float
Supported Platforms: Linux, AIX, MacOS
Average CPU usage (USER) for last 5 minutes (percents, all CPUs)

System.CPU.Usage5.User(*)
Data type: Float
Supported Platforms: Linux, AIX, MacOS
Parameters:

1. Zero-based index of CPU.
Average CPU usage (USER) for last 5 minutes (percents, specific CPU)

538 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

System.CPU.Usage15.User
Data type: Float
Supported Platforms: Linux, AIX, MacOS
Average CPU usage (USER) for last 15 minutes (percents, all CPUs)

System.CPU.Usage15.User(*)
Data type: Float
Supported Platforms: Linux, AIX, MacOS
Parameters:

1. Zero-based index of CPU.
Average CPU usage (USER) for last 15 minutes (percents, specific CPU)

System.CPU.VendorId
Data type: String
Supported Platforms: Windows, Linux, FreeBSD
CPU vendor ID.

System.CurrentTime
Data type: Float
Supported Platforms: Windows, Linux
Current system time

System.CurrentTime.ISO8601.Local
Data type: String
Supported Platforms: Windows, Linux
Current system local time in ISO 8601 format

System.CurrentTime.ISO8601.UTC
Data type: String
Supported Platforms: Windows, Linux
Current system UTC time in ISO 8601 format

System.HandleCount
Data type: Int32
Supported Platforms: Windows, Linux, Solaris, AIX
Total handles count at the moment

46.8. List of supported metrics 539

NetXMS Administrator Guide, Release 5.2.0

System.Hostname
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Host name

System.IO.BytesReadRate
Data type: Int64
Supported Platforms: Linux, Solaris, AIX, HP-UX
Average number of bytes read per second for last minute

System.IO.BytesReadRate(*)
Data type: Int64
Supported Platforms: Linux, Solaris, AIX, HP-UX
Parameters:

1. Device name
Average number of bytes read per second on specific device for last minute

System.IO.BytesWriteRate
Data type: Int64
Supported Platforms: Linux, Solaris, AIX, HP-UX
Average number of bytes written per second for last minute

System.IO.BytesWriteRate(*)
Data type: Int64
Supported Platforms: Linux, Solaris, AIX, HP-UX
Parameters:

1. Device name
Average number of bytes written per second on specific device for last minute

System.IO.DiskQueue
Data type: Float
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX
Average disk queue length for last minute

Note

On Windows this metric is provided by winperf subagent

540 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

System.IO.DiskQueue(*)
Data type: Float
Supported Platforms: Linux, Solaris, AIX, HP-UX
Parameters:

1. Device name
Average disk queue length for last minute for specific device

System.IO.DiskTime
Data type: Float
Supported Platforms: Windows, Linux
Average disk busy time for last minute (percents)

Note

On Windows this metric is provided by winperf subagent

System.IO.DiskTime(*)
Data type: Float
Supported Platforms: Linux
Parameters:

1. Device name
Average disk busy time for last minute for specific device (percents)

System.IO.ReadRate
Data type: Float
Supported Platforms: Linux, Solaris, AIX, HP-UX
Average number of read operations per second for last minute

System.IO.ReadRate(*)
Data type: Float
Supported Platforms: Linux, Solaris, AIX, HP-UX
Parameters:

1. Device name
Average number of read operations per second on specific device for last minute

System.IO.TransferRate
Data type: Float
Supported Platforms: AIX, HP-UX
Average number of data transfers per second for last minute

46.8. List of supported metrics 541

NetXMS Administrator Guide, Release 5.2.0

System.IO.TransferRate(*)
Data type: Float
Supported Platforms: AIX, HP-UX
Parameters:

1. Device name
Average number of data transfers per second on specific device for last minute

System.IO.OpenFiles
Data type: Int32
Supported Platforms: HP-UX
Number of open files

System.IO.WaitTime
Data type: UInt32
Supported Platforms: AIX, HP-UX
Average I/O wait time in milliseconds for last minute

System.IO.WaitTime(*)
Data type: UInt32
Supported Platforms: AIX, HP-UX
Parameters:

1. Device name
Average I/O wait time on specific device in milliseconds for last minute

System.IO.WriteRate
Data type: Float
Supported Platforms: Linux, Solaris, AIX, HP-UX
Average number of write operations per second for last minute

System.IO.WriteRate(*)
Data type: Float
Supported Platforms: Linux, Solaris, AIX, HP-UX
Parameters:

1. Device name
Average number of write operations per second on specific device for last minute

542 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

System.IsRestartPending
Data type: Integer
Supported Platforms: Windows
Indicator of pending system restart. Returns 1 when there are pending file renaming or deletion operations that cannot be
immediately completed by the system because the files are currently in use.

System.IsVirtual
Data type: Integer
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Virtual system indicator. Returns 1 if system is virtual, 0 if not.

System.KStat(*)
Data type: Undefined
Supported Platforms: Solaris
Parameters:

1. Module
2. Instance
3. Name
4. Statistic

Solaris kstat data. More information can be found in kstat man.

System.Memory.Physical.Available
Data type: UInt64
Supported Platforms: Linux
Available physical memory in bytes

System.Memory.Physical.AvailablePerc
Data type: Float
Supported Platforms: Linux
Percentage of available physical memory

System.Memory.Physical.Buffers
Data type: UInt64
Supported Platforms: Linux
Physical memory used for buffers.

46.8. List of supported metrics 543

NetXMS Administrator Guide, Release 5.2.0

System.Memory.Physical.BuffersPerc
Data type: Float
Supported Platforms: Linux
Percentage of physical memory used for buffers.

System.Memory.Physical.Cached
Data type: UInt64
Supported Platforms: Linux
Physical memory used for cache.

System.Memory.Physical.CachedPerc
Data type: Float
Supported Platforms: Linux
Percentage of physical memory used for cache.

System.Memory.Physical.Free
Data type: UInt64
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Free physical memory in bytes

System.Memory.Physical.FreePerc
Data type: Uint
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD
Percentage of free physical memory

System.Memory.Physical.Total
Data type: UInt64
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Total amount of physical memory in bytes

System.Memory.Physical.Used
Data type: UInt64
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Used physical memory in bytes

System.Memory.Physical.UsedPerc
Data type: Float
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD
Percentage of used physical memory

544 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

System.Memory.Swap.Free
Data type: UInt64
Supported Platforms: Linux, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Free swap space in bytes

System.Memory.Swap.FreePerc
Data type: Float
Supported Platforms: Linux, AIX, HP-UX, FreeBSD
Percentage of free swap space

System.Memory.Swap.Total
Data type: UInt64
Supported Platforms: Linux, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Total amount of swap space in bytes

System.Memory.Swap.Used
Data type: UInt64
Supported Platforms: Linux, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Used swap space in bytes

System.Memory.Swap.UsedPerc
Data type: Float
Supported Platforms: Linux, AIX, HP-UX, FreeBSD
Percentage of used swap space

System.Memory.Virtual.Active
Data type: UInt64
Supported Platforms: AIX
Active virtual memory

System.Memory.Virtual.ActivePerc
Data type: Float
Supported Platforms: AIX
Percentage of active virtual memory

System.Memory.Virtual.Free
Data type: UInt64
Supported Platforms: Windows, Linux, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Free virtual memory in bytes

46.8. List of supported metrics 545

NetXMS Administrator Guide, Release 5.2.0

System.Memory.Virtual.FreePerc
Data type: Float
Supported Platforms: Windows, Linux, AIX, HP-UX, FreeBSD
Percentage of free virtual memory

System.Memory.Virtual.Total
Data type: UInt64
Supported Platforms: Windows, Linux, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Total amount of virtual memory in bytes

System.Memory.Virtual.Used
Data type: UInt64
Supported Platforms: Windows, Linux, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Used virtual memory in bytes

System.Memory.Virtual.UsedPerc
Data type: Float
Supported Platforms: Windows, Linux, AIX, HP-UX, FreeBSD
Percentage of used virtual memory

System.MsgQueue.Bytes(*)
Data type: UInt64
Supported Platforms: Linux, Solaris, AIX, HP-UX
Parameters:

1. Queue ID or key
Bytes in given message queue.

System.MsgQueue.BytesMax(*)
Data type: UInt64
Supported Platforms: Linux, Solaris, AIX, HP-UX
Parameters:

1. Queue ID or key
Maximum allowed bytes in given message queue.

System.MsgQueue.ChangeTime(*)
Data type: UInt64
Supported Platforms: Linux, Solaris, AIX, HP-UX
Parameters:

1. Queue ID or key

546 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Time of the last change for given message queue.

System.MsgQueue.Messages(*)
Data type: UInt
Supported Platforms: Linux, Solaris, AIX, HP-UX
Parameters:

1. Queue ID or key
Number of messages in given message queue.

System.MsgQueue.RecvTime(*)
Data type: UInt64
Supported Platforms: Linux, Solaris, AIX, HP-UX
Parameters:

1. Queue ID or key
Last recieved message time in given message queue.

System.MsgQueue.SendTime(*)
Data type: UInt64
Supported Platforms: Linux, Solaris, AIX, HP-UX
Parameters:

1. Queue ID or key
Last sent message time in given message queue.

System.OS.Build
Data type: String
Supported Platforms: Windows, Linux, FreeBSD
Operating system build.

Note

Might be not available on some Linux family platforms.

System.OS.LicenseKey
Data type: String
Supported Platforms: Windows
Operating system license key.

46.8. List of supported metrics 547

NetXMS Administrator Guide, Release 5.2.0

System.OS.ProductId
Data type: String
Supported Platforms: Windows
Operating system ID.

System.OS.ProductName
Data type: String
Supported Platforms: Windows, Linux, AIX, FreeBSD, Solaris
Operating system name.

System.OS.ProductType
Data type: String
Supported Platforms: Windows, Linux, FreeBSD
Operating system type.

Note

Might be not available on some Linux family platforms.

System.OS.ServicePack
Data type: String
Supported Platforms: Windows, AIX
Operating system service pack.

System.OS.Version
Data type: String
Supported Platforms: Windows, Linux, AIX, FreeBSD, Solaris
Operating system version.

System.PlatformName
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Unified platform name (used by agent upgrade component)

System.ProcessCount
Data type: UInt32
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Total number of processes in system

548 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

System.ServiceState(*)
Data type: Int32
Supported Platforms: Windows
Parameters:

1. Windows service name
State of system service. Possible values:

• 0 - service running
• 1 - service paused
• 2 - service starting (start pending)
• 3 - service pausing (pause pending)
• 4 - service starting after pause (continue pending)
• 5 - service stopping (stop pending)
• 6 - service stopped
• 255 - unable to get current service state

System.ThreadCount
Data type: UInt32
Supported Platforms: Windows, Linux, AIX, FreeBSD, NetBSD
Total number of threads in system

System.TimeZone
Data type: String
Supported Platforms: Windows, Linux
System time zone offset and name

System.TimeZoneOffset
Data type: Int32
Supported Platforms: Windows, Linux
System time zone offset from UTC time

System.Uname
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Output of uname command

46.8. List of supported metrics 549

NetXMS Administrator Guide, Release 5.2.0

System.Uptime
Data type: Int32
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Number of seconds since system boot

Note

On Windows this metric is provided by winperf subagent

X509.Certificate.ExpirationDate
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Path to the certificate file.
Expiration date (YYYY-MM-DD) of X.509 certificate from provided file.

X509.Certificate.ExpirationTime
Data type: UInt64
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Path to the certificate file.
Expiration date in UNIX timestamp format.

X509.Certificate.ExpiresIn
Data type: Int32
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Path to the certificate file.
Days until expiration of X.509 certificate from provided file.

X509.Certificate.Issuer
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Path to the certificate file.
Issuer of X.509 certificate from provided file.

550 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

X509.Certificate.Subject
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Path to the certificate file.
Subject of X.509 certificate from provided file.

X509.Certificate.TemplateID
Data type: String
Supported Platforms: Windows, Linux, Solaris, AIX, HP-UX, FreeBSD, NetBSD, OpenBSD
Parameters:

1. Path to the certificate file.
Template ID of X.509 certificate from provided file.

46.8.2 List metrics
DRBD.DeviceList
Data type: List of String
Supported Platforms: Linux
List of configured DRBD devices

FileSystem.MountPoints
Data type: List of String
Supported Platforms: Linux, Windows, Solaris, AIX, FreeBSD
Currently available mount points

Hardware.Batteries
Data type: List of String
Supported Platforms: Linux, Windows, Solaris
Information about batteries installed on the device

Hardware.MemoryDevices
Data type: List of String
Supported Platforms: Linux, Windows, Solaris
Information about available memory devices

Hardware.Processors
Data type: List of String
Supported Platforms: Windows
Information about available processors

46.8. List of supported metrics 551

NetXMS Administrator Guide, Release 5.2.0

Hardware.StorageDevices
Data type: List of String
Supported Platforms: Windows
Information about available storage devices

LVM.LogicalVolumes
Data type: List of String
Supported Platforms: AIX
Logical Volume Manager information - all logical volumes

LVM.LogicalVolumes(*)
Data type: List of String
Supported Platforms: AIX
Logical Volume Manager information - logical volumes of the specified volume group

LVM.PhysicalVolumes
Data type: List of String
Supported Platforms: AIX
Logical Volume Manager information - all physical volumes

LVM.PhysicalVolumes(*)
Data type: List of String
Supported Platforms: AIX
Parameters:

1. Volume group name.
Logical Volume Manager information - physical volumes of the specified volume group

LVM.VolumeGroups
Data type: List of String
Supported Platforms: AIX
Logical Volume Manager information - volume groups’ names

Net.ArpCache
Data type: List of String
Supported Platforms: Linux, Windows, FreeBSD
Local ARP cache

552 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Net.InterfaceList
Data type: List of String
Supported Platforms: Linux, Windows, Solaris, AIX, FreeBSD
Interface index, IP address, subnet mask, type, maximum transmission unit, MAC address and name
The format is: [index] [IP]/[mask] [type]([MTU]) [MAC] [name]

Net.InterfaceNames
Data type: List of String
Supported Platforms: Linux, Windows, Solaris, AIX, FreeBSD
Names of available interfaces

Net.IP.RoutingTable
Data type: List of String
Supported Platforms: Linux, Windows, FreeBSD
IP routing table

System.ActiveUserSessions
Data type: List of String
Supported Platforms: Linux, Windows
Currently active user sessions

System.Desktops(*)
Data type: List of String
Supported Platforms: Windows
Currently active desktops

System.IO.Devices
Data type: List of String
Supported Platforms: Linux, Windows
Currently available input and output devices’ names

System.ProcessList
Data type: List of String
Supported Platforms: Linux, Windows, Solaris, AIX, FreeBSD
Running processes’ names

System.Services
Data type: List of String
Supported Platforms: Windows
Running services’ names

46.8. List of supported metrics 553

NetXMS Administrator Guide, Release 5.2.0

System.WindowStations
Supported Platforms: Windows
Window stations’ names

46.8.3 Table metrics

Note

Columns marked with * are instance columns (primary keys). Such columns (or combination of columns) are desig-
nated to uniquely identify each table record.

FileSystem.Volumes
Supported Platforms: Linux, Windows, Solaris, AIX

Column name Data type
Mount Point * String
Volume String
Label String
FS Type String
Total UInt64
Free UInt64
Free % Float
Available UInt64
Available % Float
Used UInt64
Used % Float

Available file system volumes

Hardware.Batteries
Supported Platforms: Linux, Windows, Solaris

Column name Data type
Handle * Int32
Name String
Location String
Capacity Uint32
Voltage UInt32
Chemistry String
Manufacturer String
Manufacture Date String
Serial Number String

Hardware information about batteries installed on the device

554 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Hardware.MemoryDevices
Supported Platforms: Linux, Windows, Solaris

Column name Data type
Handle * Int32
Location String
Bank String
Form factor String
Type String
Size Uint64
Max Speed Uint64
Configured Speed Uint64
Manufacturer String
Part Number String
Serial Number String

Hardware information about available memory devices

Hardware.NetworkAdapters
Supported Platforms: Linux, Windows

Column name Data type
Index * UInt32
Product String
Manufacturer String
Description String
Type String
MAC address String
Interface index UInt32
Speed UInt64
Availability UInt32

Hardware information about available network adapters

Hardware.Processors
Supported Platforms: Linux, Windows, Solaris

46.8. List of supported metrics 555

NetXMS Administrator Guide, Release 5.2.0

Column name Data type
Handle * Int32
Type String
Family String
Version String
Socket String
Cores UInt32
Threads UInt32
Max Speed UInt64
Current Speed UInt64
Manufacturer String
Part Number String
Serial Number String

Hardware information about available processors

Hardware.StorageDevices
Supported Platforms: Linux, Windows

Column name Data type
Number * UInt32
Type UInt32
Type description String
Bus type String
Removable Int32
Size UInt64
Manufacturer String
Product String
Revision String
Serial number String

Hardware information about available storage devices

Net.Wireguard.Interfaces
Supported Platforms: Linux, BSD, Mac OS X

Column name Data type
NAME * String
PUBLIC_KEY String
LISTEN_PORT UInt32

Example output:

| NAME | PUBLIC_KEY | LISTEN_PORT |

| gw | eWfYktu1DjurgOUfCiBOfbiduddfmLiS1D+smdBj+28= | 51820 |

556 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Net.Wireguard.Peers
Supported Platforms: Linux, BSD, Mac OS X

Column name Data type
INTERFACE String
PEER_PUBLIC_KEY * String
ENDPOINT String
ALLOWED_IPS String
HANDSHAKE_TIMESTAMP UInt64
RX UInt64
TX UInt64

Example output:

| INTERFACE | PEER_PUBLIC_KEY | ENDPOINT ␣

↪→ | ALLOWED_IPS | HANDSHAKE_TIMESTAMP | RX | TX |

| gw | BWEY+dXnkkhl836PVpkDaAwImnFeCQogfZrnVz1Svmo= |␣

↪→[fd42:5c39:7438:816b:216:3eff:fed3:fd0a]:10687 | 192.168.1.2/32 | 1722296581 ␣

↪→ | 3676 | 1012 |

| gw | TN77lQm65yIJIKWGJyWwFSfa8QCuLYasap5m0x+/CBM= | 10.107.72.157:6802 ␣

↪→ | 192.168.2.2/32 | 1722296582 | 3676 | 1012 |

System.ActiveUserSessions
Supported Platforms: Windows

Column name Data type
ID * UInt32
User name String
Terminal String
State String
Client name String
Client address String
Client display String
Connect time UInt64
Logon time UInt64
Idle for UInt32

Currently active user sessions

System.InstalledProducts
Supported Platforms: Linux, Windows, Solaris, AIX, FreeBSD

46.8. List of supported metrics 557

NetXMS Administrator Guide, Release 5.2.0

Column name Data type
Name * String
Version String
Vendor String
Install Date String
URL String
Description String

Products installed on the system

System.OpenFiles
Supported Platforms: Linux

Column name Data type
PID * UInt32
Process String
Handle * UInt32
Name String

Files opened by processes

System.Processes
Supported Platforms: Linux, Windows, Solaris, AIX, FreeBSD

Column name Data type
PID * UInt32
Name String
User String
Threads UInt32
Handles UInt32
Kernel Time UInt64
User Time UInt64
VM Size UInt64
RSS UInt64
Page Faults UInt64
Command Line String

Running processes information

System.Services
Supported Platforms: Windows

558 Chapter 46. Appendix

NetXMS Administrator Guide, Release 5.2.0

Column name Data type
Name * String
Display name String
Type String
State String
Startup String
Run As String
PID UInt32
Binary String
Dependencies String

Running services information

46.8. List of supported metrics 559

NetXMS Administrator Guide, Release 5.2.0

560 Chapter 46. Appendix

CHAPTER

FORTYSEVEN

GLOSSARY

802.1x
IEEE 802.1X (also known as Dot1x) is an IEEE Standard for Port-based Network Access Control (PNAC). It is
part of the IEEE 802.1 group of networking protocols. It provides an authentication mechanism to devices wishing
to attach to a LAN or WLAN. More details in Wikipedia

Action
Configurable operation which can be executed by the system when Event is passing thru Event Processing Pol-
icy. Multiple action types are supported, including email or notifications (SMS, instant messages), executing OS
commands and forwarding events to another instance of NetXMS server.

Alarm
Outstanding issue which require operator attention. Alarms are created by the system as a result of Event passing
thru Event Processing Policy.

Alarm Browser
View in user interface, which shows all active alarms in the system and allow user to interact with them.

ARP
The Address Resolution Protocol (ARP) is a telecommunication protocol used for resolution of network layer
addresses into link layer addresses, a critical function in multiple-access networks. More details in Wikipedia

Business Service
An IT Service that directly supports a Business Process, as opposed to an Infrastructure Service which is used
internally by the IT Service Provider and is not usually visible to the Business.

CA
Certification authority is an entity that issues digital certificates. More details in Wikipedia

CDP
Cisco Discovery Protocol is a Cisco proprietary protocol that runs between direct connected network entities
(routers, switches, remote access devices, IP telephones etc.). The purpose of the protocol is to supply a network
entity with information about its direct connected neighbors. More details in Wikipedia.

Condition
(Create condition in infrastructure services)

Container
Object that can store other containers and nodes.

CSR
Certificate signing request is a message sent from an applicant to a certificate authority in order to apply for a digital
identity certificate. More details in Wikipedia

Dashboard
Manually generatedObject that can combine any available visualization components with data frommultiple sources
in order to create high-level views to see network or parts of it, and it’s health.

561

http://en.wikipedia.org/wiki/IEEE_802.1X
http://en.wikipedia.org/wiki/Address_Resolution_Protocol
http://en.wikipedia.org/wiki/Certificate_authority
http://en.wikipedia.org/wiki/Cisco_Discovery_Protocol
http://en.wikipedia.org/wiki/Certificate_signing_request

NetXMS Administrator Guide, Release 5.2.0

Data Collection Item
Configuration entity of a single Metric.

DCI
Abbreviation for Data Collection Item

DNS
Domain Name System. More details in Wikipedia

Entire Network
Automatically generated object hierarchy that contains all nodes and IP subnets known to NetXMS.

EPP
Abbreviation for Event Processing Policy

Event
TBD A change of state which has significance for the management of IT Service.

Event Processing Policy
List of rules which defines system reaction on events. All events are matched against list of rules in Event Processing
Policy, if match is found - configured actions are executed.

Event Template
TBD

GPL
GNU General Public License. Full text of the License, version 2 <http://www.gnu.org/licenses/gpl-2.0.html>

GUID
A Globally Unique Identifier is a unique reference number used as an identifier in computer software. More details
in Wikipedia

ICMP
The Internet Control Message Protocol (ICMP) is one of the main protocols of the Internet Protocol Suite. It is
used by network devices, like routers, to send error messages indicating, for example, that a requested service is
not available or that a host or router could not be reached. More details in Wikipedia.

Infrastructure services
System container which can be used by Administrator to define logical structure of the network.

LAN
A local area network (LAN) is a computer network that interconnects computers within a limited area such as a
home, school, computer laboratory, or office building, using network media. The defining characteristics of LANs,
in contrast to wide area networks (WANs), include their smaller geographic area, and non-inclusion of leased
telecommunication lines. More details in Wikipedia.

LDAP
The Lightweight Directory Access Protocol (LDAP) is an open, vendor-neutral, industry standard application pro-
tocol for accessing and maintaining distributed directory information services over an Internet Protocol (IP) net-
work. More details in Wikipedia

LLDP
The Link Layer Discovery Protocol (LLDP) is a vendor-neutral link layer protocol in the Internet Protocol Suite
used by network devices for advertising their identity, capabilities, and neighbors on an IEEE 802 local area network,
principally wired Ethernet. The protocol is formally referred to by the IEEE as Station and Media Access Control
Connectivity Discovery specified in standards document IEEE 802.1AB. More details in Wikipedia

MAC address
A media access control address (MAC address) is a unique identifier assigned to network interfaces for commu-
nications on the physical network segment. MAC addresses are used as a network address for most IEEE 802

562 Chapter 47. Glossary

http://en.wikipedia.org/wiki/Domain_Name_System
http://en.wikipedia.org/wiki/Globally_unique_identifier
http://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
http://en.wikipedia.org/wiki/Local_area%0Anetwork
http://en.wikipedia.org/wiki/Lightweight%0ADirectory_Access_Protocol
http://en.wikipedia.org/wiki/Link_Layer_Discovery_Protocol

NetXMS Administrator Guide, Release 5.2.0

network technologies, including Ethernet and WiFi. Logically, MAC addresses are used in the media access con-
trol protocol sublayer of the OSI reference model. More details in Wikipedia.

Management Client
NetXMS user interface. Available in form of rich client for both desktop and mobile or as web user interface.

Metric
One entity of collected data

MIB Explorer
View in user interface, which allows to navigate SNMP MIB tree and run SNMP walk on nodes.

Mobile Device Object
Special type of Node that represents monitored mobile device.

Monitoring Agent
NetXMS or SNMP agent that provides information to NetXMS Server.

NDP
The Neighbor Discovery Protocol (NDP) is a protocol in the Internet protocol suite used with Internet Protocol
Version 6 (IPv6). More details in Wikipedia

Network Discovery
Network investigation in order to find new nodes. There are 2 types of discovery: active and passive. In passive
mode, information about new hosts and devices obtained from ARP tables and routing tables of already known
devices. In active discovery mode, NetXMS server will send an ICMP echo requests to all IP addresses in given
range, and consider each responding address for adding to database.

Network Map
Visual representation of network topology.

NetXMS Agent
NetXMS daemon that is installed on monitored Node to provide additional monitoring options.

Node
Object that represents server or device.

NXSL
NetXMS Scripting Language.

Object
Representation of logical or physical entity.

Object tool
Configurable operation that can be executed on Node.

Package Manager
View that manages update packages for NetXMS agents.

Perspective
A perspective defines the initial set and layout of views in the Eclipse Workbench window.

Policy
Configuration parameter set that can be applied on a Node.

Polling
Polling is process of gathering information by server from nodes. This is usually done automatically at specified
intervals of time, but can be triggered manually also. There are different types of polling: Status, Configuration,
Topology, Discovery and Routing.

Proxy Agent
NetXMSAgent capable of forwarding requests to nodeswhich are not directly accessible to NetXMS server. Agent
support proxying of native agent protocol as well as SNMP.

563

http://en.wikipedia.org/wiki/MAC_address
http://en.wikipedia.org/wiki/Rich_client
http://en.wikipedia.org/wiki/Neighbor_Discovery_Protocol

NetXMS Administrator Guide, Release 5.2.0

Push parameter
Type of DCI, where collected data is pushed into the server by the agent.

RADIUS
Remote Authentication Dial In User Service (RADIUS) is a networking protocol that provides centralized Au-
thentication, Authorization, and Accounting (AAA) management for users who connect and use a network service.
More details in Wikipedia

SMCLP
Server Management Command Line Protocol

SNMP
Simple Network Management Protocol (SNMP) is an “Internet-standard protocol for managing devices on IP
networks”. Devices that typically support SNMP include routers, switches, servers, workstations, printers, modem
racks and more. SNMP is used mostly in network management systems to monitor network-attached devices for
conditions that warrant administrative attention. SNMP is a component of the Internet Protocol Suite as defined by
the Internet Engineering Task Force (IETF). It consists of a set of standards for network management, including
an application layer protocol, a database schema, and a set of data objects. More details in Wikipedia.

SNMP Trap
Asynchronous notification from SNMP agent to SNMP manager. SNMP traps enable an agent to notify the man-
agement station of significant events by way of an unsolicited SNMP message. More details in Wikipedia.

STP
The Spanning Tree Protocol (STP) is a network protocol that ensures a loop-free topology for any bridged Ethernet
local area network. The basic function of STP is to prevent bridge loops and the broadcast radiation that results
from them. Spanning tree also allows a network design to include spare (redundant) links to provide automatic
backup paths if an active link fails, without the danger of bridge loops, or the need for manual enabling/disabling
of these backup links. More details in Wikipedia

Subagent
Extension module (shared library) which can be loaded into NetXMS agent to provide additional functionality.

Syslog
Widely used standard for message logging. More details in Wikipedia.

Template
A preset of one or more DCIs that can be applied on Node.

Threshold
Part of DCI configuration, which define events to be generated when collected value is outside of expected range.

TLS
Transport Layer Security is a cryptographic protocols that provide communications security over a computer net-
work. More details in Wikipedia.

Trim Stack
View Stack in minimized state, represented as a set of buttons, one for each View in the stack.

UPS
An uninterruptible power supply, also uninterruptible power source, UPS or battery/flywheel backup, is an electrical
apparatus that provides emergency power to a load when the input power source, typically mains power, fails. More
details in Wikipedia

URL
A uniform resource locator (URL) is a reference to a resource that specifies the location of the resource on a
computer network and a mechanism for retrieving it. More details in Wikipedia

View
In the Eclipse Platform a view is typically used to navigate a hierarchy of information, open an editor, or display
properties for the active editor.

564 Chapter 47. Glossary

http://en.wikipedia.org/wiki/RADIUS
http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol%23Trap
http://en.wikipedia.org/wiki/Spanning_Tree_Protocol
http://en.wikipedia.org/wiki/Syslog
http://en.wikipedia.org/wiki/Transport_Layer_Security
http://en.wikipedia.org/wiki/Uninterruptible_Power_Supply
http://en.wikipedia.org/wiki/Uniform%0Aresource_locator

NetXMS Administrator Guide, Release 5.2.0

View Stack
Multiple views combined into single one, with tab navigation on top of it.

VLAN
In computer networking, a single layer-2 network may be partitioned to create multiple distinct broadcast domains,
which are mutually isolated so that packets can only pass between them via one or more routers; such a domain is
referred to as a virtual local area network, virtual LAN or VLAN. More details in Wikipedia.

VPN
A virtual private network (VPN) extends a private network across a public network, such as the Internet. It enables a
computer or network-enabled device to send and receive data across shared or public networks as if it were directly
connected to the private network, while benefiting from the functionality, security and management policies of the
private network. A VPN is created by establishing a virtual point-to-point connection through the use of dedicated
connections, virtual tunneling protocols, or traffic encryptions. Major implementations of VPNs include OpenVPN
and IPsec. More details in Wikipedia.

VRRP
The Virtual Router Redundancy Protocol (VRRP) is a computer networking protocol that provides for automatic
assignment of available Internet Protocol (IP) routers to participating hosts. This increases the availability and
reliability of routing paths via automatic default gateway selections on an IP subnetwork. More details in Wikipedia

Zone
Zone in NetXMS is a group of IP subnets which form non-overlapping IP address space. There is always zone 0
which contains subnets directly reachable by management server. For all other zones server assumes that subnets
within that zones are not reachable directly, and proxy must be used. It is used to monitor subnets with overlapping
IP address space.

565

http://en.wikipedia.org/wiki/Virtual_LAN
http://en.wikipedia.org/wiki/Virtual_private_network
http://en.wikipedia.org/wiki/Virtual_Router_Redundancy_Protocol

NetXMS Administrator Guide, Release 5.2.0

566 Chapter 47. Glossary

INDEX

Non-alphabetical
802.1x, 561

A
Action, 561
Alarm, 561
Alarm Browser, 561
ARP, 561

B
Business Service, 561

C
CA, 561
CDP, 561
Condition, 561
Container, 561
CSR, 561

D
Dashboard, 561
Data Collection Item, 562
DCI, 562
DNS, 562

E
Entire Network, 562
EPP, 562
Event, 562
Event Processing Policy, 562
Event Template, 562

G
GPL, 562
GUID, 562

I
ICMP, 562
Infrastructure services, 562

L
LAN, 562

LDAP, 562
LLDP, 562

M
MAC address, 562
Management Client, 563
Metric, 563
MIB Explorer, 563
Mobile Device Object, 563
Monitoring Agent, 563

N
NDP, 563
Network Discovery, 563
Network Map, 563
Node, 563
NXSL, 563

O
Object, 563
Object tool, 563

P
Package Manager, 563
Perspective, 563
Policy, 563
Polling, 563
product_name Agent, 563
Proxy Agent, 563
Push parameter, 564

R
RADIUS, 564

S
SMCLP, 564
SNMP, 564
SNMP Trap, 564
STP, 564
Subagent, 564
Syslog, 564

567

NetXMS Administrator Guide, Release 5.2.0

T
Template, 564
Threshold, 564
TLS, 564
Trim Stack, 564

U
UPS, 564
URL, 564

V
View, 564
View Stack, 565
VLAN, 565
VPN, 565
VRRP, 565

Z
Zone, 565

568 Index

	Introduction
	Product Support
	Conventions
	Changelog

	Concepts
	Architecture overview
	Objects
	Object status
	Unmanaged status
	Maintenance mode

	Event Processing
	Polling
	Data Collection
	Discovery
	Network discovery
	Instance discovery

	Security

	Installation
	Major changes between releases
	5.1.4
	5.1
	5.0
	4.4
	4.2
	4.1
	4.0
	3.8
	3.7
	3.6
	3.5
	3.1
	3.0

	Planning
	Operating system
	Server hardware
	Linux kernel tuning
	Database
	Java
	Agent

	Installing from DEB repository
	Add APT repository
	Using the netxms-release package
	Manually

	Installing packages
	Server
	Agent
	Management Client
	Desktop Management Client
	Web Management Client

	Installing from RPM repository
	Add repository
	Installing packages
	Server
	Agent
	Management Client
	Desktop Management Client
	Web Management Client

	Installing on Windows
	Server
	Agent
	Management Client
	Unattended installation of the NetXMS Agent
	Unattended uninstallation of NetXMS Agent

	Install on Android
	Management Client

	Installing from sources
	Server
	Agent

	Customizing the compilation process
	Adding additional compiler or linker flags

	WebUI additional configuration
	Custom logo on login screen
	How to configure the NetXMS web client with jetty in Linux

	Default login credentials
	Database creation examples
	PostgreSQL
	MariaDB
	MySQL
	Oracle
	How to install NetXMS server on Windows Server with local Microsoft SQL Server Express
	How to install NetXMS server on Windows Server with remote Microsoft SQL Server Express

	Upgrade
	Upgrading on Debian or Ubuntu
	Upgrading server and agent
	Management client

	Upgrading on Red Hat, Fedora, CentOS or ScientificLinux
	Upgrading
	Server
	Agent
	Management Client

	Upgrading on Windows
	Upgrade
	Server
	Agent
	Management Client

	Generic upgrade using source tarball
	Server
	Agent

	Centralized agent upgrade

	Quick start
	Default Credentials
	Basic agent configuration
	Windows
	UNIX/Linux

	Basic server tuning
	Windows
	UNIX/Linux
	Server configuration variables

	Notification channels
	Actions and Alarms
	SNMP Defaults
	Passive discovery
	Notes

	Manually add node
	Data Collection items
	CPU usage
	Interface traffic

	Agent management
	Introduction
	Agent configuration files
	Master configuration file
	UNIX-like systems
	Windows

	Additional configuration files
	UNIX-like systems
	Windows

	Agent policy configuration files

	Agent configuration options from server
	Edit configuration file remotely
	Agent configuration files on server
	Configuration

	Agent configuration policy
	Agent Configuration Policies vs. Agent Configuration Files on Server

	Agent Policies
	Agent configuration policy
	Log parser policy
	File delivery policy
	User support application policy

	Agent registration
	Server to agent connection
	Agent to server connection
	ServerConnection parameter
	ServerConnection section
	Agent registration on server
	Debugging

	Security
	Message encryption in server to agent communication
	Security in agent to server connection
	Server access levels
	Shared secret
	Password encryption

	Subagents
	Java subagent
	Java plugins

	Load of subagent as separate process

	Agent Proxy node configuration
	Agent configuration

	Agent External Metrics
	ExternalMetric/ExternalMetricShellExec
	ExternalList
	ExternalMetricProvider
	ExternalTable

	Agent Actions

	Server management
	Configuration file
	Server configuration for Agent to Server connection / Tunnel connection
	Initial configuration
	Self signed certificate sample

	Reissuing server certificate
	Node binding

	Configuration variables
	Synchronization between servers
	netxmsd commandline options
	Server debug console
	Server commands

	Configuring self-monitoring
	Database connection pool
	ICMP proxy

	SNMP
	SNMP Drivers
	MIB Explorer
	SNMP Trap Configuration
	Default SNMP credentials
	Using ifTable and ifXTable
	Configure SNMP Proxy
	Agent configuration

	Configure SNMP Trap Proxy
	Agent configuration
	Server configuration

	Import MIB
	Manage User MIBs
	For versions older 5.0
	Compiling MIBs
	Troubleshooting

	Working with the SNMP Tables
	How to Create a Table
	Table Thresholds and Instance Columns
	Configuration example
	Additional tips

	User management
	Introduction
	Terms and Definitions
	Users
	Superuser

	Groups
	Everyone Group

	System Access Rights
	UI Access Rules

	User Authentication
	Internal Password
	Password Policy

	RADIUS
	Certificate Authentication
	Certificate management
	Link certificate and user

	CAS authentication
	Two-factor authentication

	Integration with LDAP
	LDAP synchronization configuration
	LDAP users/groups relationships with native NetXMS users/groups
	Login with help of LDAP user
	LDAP configuration debugging
	LDAP configuration examples
	Active Directory
	OpenLDAP

	Managing User Accounts
	Audit

	Object management
	Object browser
	Object browser options
	Filters

	Objects
	Subnet
	Node
	Rack
	Chassis
	Cluster
	Interface
	Network Service
	VPN Connector
	Condition
	Container
	Automatic bind option

	Circuit

	Common object properties
	General
	Custom attributes
	Status calculation
	Example of threshold status calculation

	Comments
	Access control

	Object Details
	Subnet

	Object Tools
	Object tool types
	Internal
	Agent Command
	SNMP Table
	Agent List
	Agent Table
	URL
	Local Command
	Server Command
	Download File
	Server Script

	Properties
	Filter
	Access Control
	Columns
	Input fields

	Macro Substitution
	Predefined Object Tools

	Network discovery
	Introduction
	Configuring Network Discovery
	General
	Schedule
	Filter
	Active Discovery Targets
	Address Filters

	Data collection
	How data collection works
	DCI configuration
	General
	Display name
	Metric
	Origin
	Data Type
	Units
	Use multipliers
	Source node override
	Collection schedule
	History retention period

	Cluster
	Associate with cluster resource
	Data aggregation

	Data Transformations
	Thresholds
	Threshold Processing
	Threshold Configuration
	Thresholds and Events

	Instance
	Instance Discovery Methods
	Instance Discovery Filter Script

	Performance view
	Access Control
	SNMP
	Windows Performance Counters
	Other options
	Comments

	Push metrics
	DCI types
	Single-value DCIs
	Table DCIs
	List DCIs

	Agent caching mode
	Configuration

	Data Collection tab
	DCI table creation example
	Status

	Templates
	What is template
	Creating template
	Configuring templates
	Applying template to node
	Removing template from node
	Macros in template items

	Working with collected data

	Event processing
	Introduction
	Event Processing Policy
	Examples

	Events
	Alarms
	Alarms Overview
	Alarm Melodies
	Alarm Browser
	Alarm Comments
	Alarm Summary Emails

	Generating and Terminating Alarms from EPP
	Alarm Category Configurator
	Automatic Alarm Termination/Resolve
	Escalation

	Actions
	Escalation
	Action types
	Execute command on management server
	Execute command on remote node
	Send notification
	Execute NXSL script
	Forward event
	Configuration
	Limitation

	Notification channels
	Drivers

	NXLS Persistent Storage
	NXSL
	View

	Macros for Event Processing

	Data and Network visualisation
	Network maps
	Creating Maps
	Edit Maps
	Adding Objects
	Adding Links between Objects
	Decorations
	DCI Container
	DCI Image
	Object Layout and display options
	Grid
	Layout
	Display object as
	Routing
	Zoom
	Object display options

	Map Background

	Dashboards
	Configuration
	Label
	Line Chart
	Bar Chart
	Pie Chart
	Status Chart
	Status Indicator
	Dashboard
	Network Map
	Custom Widget
	Get Map
	Alarm Viewer
	Availability Chart
	Gauge
	Web Page
	Bar Chart for Table DCI
	Pie Chart for Table DCI
	Separator
	Table Value
	Status Map
	DCI Summary Table
	Syslog Monitor
	SNMP Trap Monitor
	Event monitor
	Service component map
	Rack diagram
	Object tools
	Object query
	Port view

	Element Property Pages
	Chart
	Data Sources
	Layout
	Web Page

	Understanding Element Layout
	Dashboard Rotation
	Tutorials

	Graphs
	Select different time interval
	Turn on automatic refresh
	Change colors
	Save current settings as predefined graph
	Save current settings as template graph
	Template Graph Configuration

	History
	Summary table
	Configuration
	Usage

	Grafana integration
	Integration with Grafana
	Requirements
	Installation
	Features

	Configuration
	Alarm Browser
	Data Collection Items

	Operating System Monitoring
	Example
	Process monitoring
	Disk free space monitoring
	CPU usage
	WMI

	File System Monitoring
	File Monitoring
	DCI Metrics for file system monitoring
	‘FileSystem.*’ Metrics
	‘File.*’ Metrics
	Examples
	Example 1
	Example 2

	Log monitoring
	Agent Configuration for Log Monitoring
	Syslog Monitoring
	Parser Definition File
	Global Parser Options
	<file> Tag
	Macros
	Matching rules
	<rule> Tag
	<match> Tag
	<id> Tag
	<source> Tag
	<level> Tag
	<facility> Tag
	<tag> Tag
	<severity> Tag
	<description> Tag
	<event> Tag
	<context> Tag
	<exclusionSchedules> Tag

	Examples of Parser Definition File
	Passing parameters to events
	Log parser metrics

	Windows Event Log Synchronization
	Agent Configuration for Event Log Synchronization
	Pre-filter
	Event ID
	Source
	Severity level

	Filter

	Server Configuration for Event Log Synchronization
	Passing parameters to events

	SSH monitoring
	SSH configuration
	SSH key configuration

	Network Service Monitoring
	Network Service Object
	Network service monitoring using DCI
	Examples

	NetSVC configuration

	Data Collection from Web Services
	Configuring Web Service Data collection
	Agent configuration
	Web service definitions
	DCI Configuration
	Instance discovery

	Data collection process
	Examples

	Modbus
	Modbus metric examples

	Database monitoring
	Oracle
	Pre-requisites
	Configuration file
	Metrics
	Lists
	Tables

	DB2
	Configuration
	Provided metrics

	MongoDB
	Building mongodb subagent
	Agent Start
	Configuration file
	Metrics
	List

	Informix
	Pre-requisites
	Configuration
	Provided metrics

	MySQL
	Configuration
	Provided metrics

	PostgreSQL
	Pre-requisites
	Configuration
	Provided Metrics
	Lists
	Tables

	Application monitoring
	Process monitoring
	Application Database Monitoring
	Configuration file
	Configuration Example
	Metrics
	Tables

	Log monitoring
	External Metrics

	ICMP ping
	ICMP response statistic collection
	Ping subagent
	Metrics requested by the server
	Metrics scheduled by the agent
	Single-value metrics
	Tables
	Lists

	Configuration file

	Hardware(sensor) monitoring
	lm-sensors
	Pre-requisites
	Parameters
	Configuration file
	Configuration example
	Sample usage

	DS18x20
	Metrics
	Configuration file
	Configuration example

	RPI
	Metrics
	Configuration file
	Configuration example

	MQTT
	Configuration file
	Configuration example
	Configuration example with metric and event configuration

	UPS monitoring
	USB or serial UPS monitoring
	SNMP UPS monitoring

	Cluster monitoring
	Introduction

	JVM monitoring
	Metrics
	Single-value Metrics
	Lists

	Configuration
	Configuration example

	Hypervisor monitoring
	Configuration
	Configuration example

	Provided Metrics
	Single-value Metrics
	Tables
	Lists

	Asterisk monitoring
	Configuration
	Configuration Examples

	Metrics
	Single-value metrics
	Tables
	Lists

	Network topology
	Introduction
	How topology information is built
	Find where node is connected
	Find MAC address
	Find IP address

	Hardware Asset Management
	Configuring Asset management schema
	Asset Creation
	Asset Linking

	Business services
	Introduction
	Business service object
	Business Service
	Service check
	DCI check
	Object check
	NXSL script check

	Business service prototype
	Configuration and usage
	Configuration
	Monitoring

	Remote file management
	Agent file management
	Introduction
	Required Configuration
	Subagent configuration
	Access rights

	File Manager view
	File menu
	Folder menu
	Other options

	Advanced File Management
	Server File Management
	Access Rights
	Upload file on server

	Package management
	Introduction

	Reporting
	User Interface
	Parameters
	Schedules
	Results section

	Installation
	Configuration
	NetXMS Server
	Reporting Server
	Report definitions

	Image library
	Mobile Client
	Main window
	Alarms
	Dashboard
	Nodes
	Graphics
	MACaddress
	Settings
	Global settings
	Connection
	Parameters
	Scheduler

	Notifications
	Connection status
	Alarms

	Interface
	Multipliers
	Graph text size
	Show legend in graphs

	Web API/Rest API
	Introduction
	Installation
	Requirements
	Setup

	Implemented functionality
	Authentication
	Login
	Creating Rest API session:
	Performing external authentication:

	Logout

	Objects
	Get multiple objects with filters
	Get object by id
	Create object
	Update object
	Get object by id
	Creation fields
	Modification fields
	GeoLocation fields
	AccessListElement fields
	CustomAttribute fields
	PostalAddress fields
	Bind object
	Bind node to
	Unbind node
	UnbindFrom node
	Poll object
	Get object poll data
	Change object zone

	Business Services
	Get checks
	Create new check
	Update existing check
	Delete existing check
	Get tickets
	Get uptime

	Alarms
	Get multiple alarms with filters
	Alarm by id

	Data collection configuration
	Get data collection configuration
	Create DCI
	Update DCI

	DCI data
	DCI values
	DCI last value
	Object last values
	Query last values
	Adhoc summary table

	Object tools
	List of available object tools
	Execute object tool

	Persistent storage
	Get all persistent storage variables
	Get persistent storage variable by key
	Create persistent storage variable
	Update persistent storage variable
	Delete persistent storage variable

	User agent notifications
	Push DCI data
	Predefined graphs

	Advanced topics
	Zones
	Enable Zoning
	Setting communication options for zones
	Moving nodes between zones
	Integration with external HelpDesk
	JIRA Module
	Required NetXMS configuration
	Required JIRA configuration
	Workflow configuration
	Ticket creation

	Hooks
	Troubleshooting
	Resetting “system” user password
	Enable Crash Dump Generation
	Force Crash Dump Creation
	SNMP Device not recognized as SNMP-capable

	Automatic actions on a new node
	Autologin for Management Client
	Desktop Management Client
	Web Management Client

	NetXMS data usage in external products
	Find Object
	Filter
	Query

	Audit log forwarding
	Syslog
	LEEF

	Custom housekeeping scripts
	Fanout drivers
	InfluxDB
	Details of operation

	Scheduled tasks
	File Upload
	Script Execution
	Package deploy
	Maintenance
	Access Rights

	Scripting
	NXSL
	Overview
	List of places where NXSL scripting is used

	Scripting library
	Usage

	Execute Server Script

	NXShell
	Usage
	Properties

	Scripting
	Global Variables
	Helper Functions
	Example

	High Availability Setup
	Infrastructure
	Production
	DR

	Switchover procedure
	Failover procedure
	Failover recovery

	Appendix
	Cron format
	Examples

	SMS Drivers
	Agent configuration file (nxagentd.conf)
	Server configuration file (netxmsd.conf)
	Server configuration parameters
	Bundled Subagents
	Command line tools
	Database Manager
	Database initialization
	Check database for errors
	Unlocking database
	Database migration
	In-place conversion from Postgres to Timescale
	Database export and import

	nxaction
	nxadm
	nxaevent
	nxalarm
	nxap
	nxappget
	nxapush
	nxencpasswd
	nxevent
	nxget
	Valid options for nxget
	Examples
	Useful lists for debugging purpose

	nxmibc
	nxpush
	nxscript
	nxsnmpget
	nxsnmpset
	nxsnmpwalk
	nxupload
	nxwsget

	List of supported metrics
	Single value metrics
	Agent.AcceptedConnections
	Agent.AcceptErrors
	Agent.ActiveConnections
	Agent.AuthenticationFailures
	Agent.ConfigurationServer
	Agent.FailedRequests
	Agent.GeneratedTraps
	Agent.IsSubagentLoaded(*)
	Agent.LastTrapTime
	Agent.IsUserAgentInstalled
	Agent.LocalDatabase.FailedQueries
	Agent.LocalDatabase.LongRunningQueries
	Agent.LocalDatabase.Status
	Agent.LocalDatabase.TotalQueries
	Agent.LogFile.Status
	Agent.Notification.QueueSize
	Agent.ProcessedRequests
	Agent.Registrar
	Agent.RejectedConnections
	Agent.SentTraps
	Agent.SourcePackageSupport
	Agent.SupportedCiphers
	Agent.SyslogProxy.IsEnabled
	Agent.SyslogProxy.ReceivedMessages
	Agent.ThreadPool.ActiveRequests(*)
	Agent.ThreadPool.CurrSize(*)
	Agent.ThreadPool.Load(*)
	Agent.ThreadPool.LoadAverage(*)
	Agent.ThreadPool.LoadAverage5(*)
	Agent.ThreadPool.LoadAverage15(*)
	Agent.ThreadPool.MaxSize(*)
	Agent.ThreadPool.MinSize(*)
	Agent.ThreadPool.Usage(*)
	Agent.TimedOutRequests
	Agent.UnsupportedRequests
	Agent.Uptime
	Agent.Version
	Disk.Avail(*)
	Disk.AvailPerc(*)
	Disk.Free(*)
	Disk.FreePerc(*)
	Disk.Total(*)
	Disk.Used(*)
	Disk.UsedPerc(*)
	File.Content(*)
	File.Count(*)
	File.FolderCount(*)
	File.Hash.CRC32(*)
	File.Hash.MD5(*)
	File.Hash.SHA1(*)
	File.Size(*)
	File.Time.Access(*)
	File.Time.Change(*)
	File.Time.Modify(*)
	File.Type(*)
	FileSystem.Avail(*)
	FileSystem.AvailInodes(*)
	FileSystem.AvailInodesPerc(*)
	FileSystem.AvailPerc(*)
	FileSystem.Free(*)
	FileSystem.FreeInodes(*)
	FileSystem.FreeInodesPerc(*)
	FileSystem.FreePerc(*)
	FileSystem.Total(*)
	FileSystem.TotalInodes(*)
	FileSystem.Type(*)
	FileSystem.Used(*)
	FileSystem.UsedInodes(*)
	FileSystem.UsedInodesPerc(*)
	FileSystem.UsedPerc(*)
	DRBD.ConnState(*)
	DRBD.DataState(*)
	DRBD.DeviceState(*)
	DRBD.PeerDataState(*)
	DRBD.PeerDeviceState(*)
	DRBD.Protocol(*)
	DRBD.Version.API
	DRBD.Version.Driver
	DRBD.Version.Protocol
	Hardware.Baseboard.Manufacturer
	Hardware.Baseboard.Product
	Hardware.Baseboard.SerialNumber
	Hardware.Baseboard.Type
	Hardware.Baseboard.Version
	Hardware.Battery.Capacity(*)
	Hardware.Battery.Chemistry(*)
	Hardware.Battery.Location(*)
	Hardware.Battery.ManufactureDate(*)
	Hardware.Battery.Manufacturer(*)
	Hardware.Battery.Name(*)
	Hardware.Battery.SerialNumber(*)
	Hardware.Battery.Voltage(*)
	Hardware.MemoryDevice.Bank(*)
	Hardware.MemoryDevice.ConfiguredSpeed(*)
	Hardware.MemoryDevice.FormFactor(*)
	Hardware.MemoryDevice.Location(*)
	Hardware.MemoryDevice.Manufacturer(*)
	Hardware.MemoryDevice.MaxSpeed(*)
	Hardware.MemoryDevice.PartNumber(*)
	Hardware.MemoryDevice.SerialNumber(*)
	Hardware.MemoryDevice.Size(*)
	Hardware.MemoryDevice.Type(*)
	Hardware.Processor.Cores(*)
	Hardware.Processor.CurrentSpeed(*)
	Hardware.Processor.Family(*)
	Hardware.Processor.Manufacturer(*)
	Hardware.Processor.MaxSpeed(*)
	Hardware.Processor.PartNumber(*)
	Hardware.Processor.SerialNumber(*)
	Hardware.Processor.Socket(*)
	Hardware.Processor.Threads(*)
	Hardware.Processor.Type(*)
	Hardware.Processor.Version(*)
	Hardware.System.MachineId
	Hardware.System.Manufacturer
	Hardware.System.Product
	Hardware.System.ProductCode
	Hardware.System.SerialNumber
	Hardware.System.Version
	Hardware.WakeUpEvent
	Hypervisor.Type
	Hypervisor.Version
	Net.Interface.AdminStatus(*)
	Net.Interface.BytesIn(*)
	Net.Interface.BytesIn64(*)
	Net.Interface.BytesOut(*)
	Net.Interface.BytesOut64(*)
	Net.Interface.Description(*)
	Net.Interface.InErrors(*)
	Net.Interface.InErrors64(*)
	Net.Interface.Link(*)
	Net.Interface.MTU(*)
	Net.Interface.OperStatus(*)
	Net.Interface.OutErrors(*)
	Net.Interface.OutErrors64(*)
	Net.Interface.PacketsIn(*)
	Net.Interface.PacketsIn64(*)
	Net.Interface.PacketsOut(*)
	Net.Interface.PacketsOut64(*)
	Net.Interface.Speed(*)
	Net.IP.Forwarding
	Net.IP6.Forwarding
	Net.IP.NextHop(*)
	Net.RemoteShareStatus(*)
	Net.RemoteShareStatusText(*)
	Net.Resolver.AddressByName(*)
	Net.Resolver.NameByAddress(*)
	PDH.CounterValue(*)
	PDH.Version
	PhysicalDisk.Capacity(*)
	PhysicalDisk.DeviceType(*)
	PhysicalDisk.Firmware(*)
	PhysicalDisk.Model(*)
	PhysicalDisk.PowerCycles(*)
	PhysicalDisk.PowerOnTime(*)
	PhysicalDisk.SerialNumber(*)
	PhysicalDisk.SmartAttr(*)
	PhysicalDisk.SmartStatus(*)
	PhysicalDisk.Temperature(*)
	Process.Count(*)
	Process.CountEx(*)
	Process.CPUTime(*)
	Process.GDIObjects(*)
	Process.Handles(*)
	Process.IO.OtherB(*)
	Process.IO.OtherOp(*)
	Process.IO.ReadB(*)
	Process.IO.ReadOp(*)
	Process.IO.WriteB(*)
	Process.IO.WriteOp(*)
	Process.KernelTime(*)
	Process.MemoryUsage(*)
	Process.PageFaults(*)
	Process.RSS(*)
	Process.Syscalls(*)
	Process.Threads(*)
	Process.UserObjects(*)
	Process.UserTime(*)
	Process.VMRegions(*)
	Process.VMSize(*)
	Process.WkSet(*)
	System.AppAddressSpace
	System.BIOS.Date
	System.BIOS.Vendor
	System.BIOS.Version
	System.ConnectedUsers
	System.CPU.Count
	System.CPU.LoadAvg
	System.CPU.LoadAvg5
	System.CPU.LoadAvg15
	System.CPU.Usage
	System.CPU.Usage(*)
	System.CPU.Usage5
	System.CPU.Usage5(*)
	System.CPU.Usage15
	System.CPU.Usage15(*)
	System.CPU.Usage.Idle
	System.CPU.Usage.Idle(*)
	System.CPU.Usage5.Idle
	System.CPU.Usage5.Idle(*)
	System.CPU.Usage15.Idle
	System.CPU.Usage15.Idle(*)
	System.CPU.Usage.IOWait
	System.CPU.Usage.IOWait(*)
	System.CPU.Usage5.IOWait
	System.CPU.Usage5.IOWait(*)
	System.CPU.Usage15.IOWait
	System.CPU.Usage15.IOWait(*)
	System.CPU.Usage.IRQ
	System.CPU.Usage.IRQ(*)
	System.CPU.Usage5.IRQ
	System.CPU.Usage5.IRQ(*)
	System.CPU.Usage15.IRQ
	System.CPU.Usage15.IRQ(*)
	System.CPU.Usage.Nice
	System.CPU.Usage.Nice(*)
	System.CPU.Usage5.Nice
	System.CPU.Usage5.Nice(*)
	System.CPU.Usage15.Nice
	System.CPU.Usage15.Nice(*)
	System.CPU.Usage.SoftIRQ
	System.CPU.Usage.SoftIRQ(*)
	System.CPU.Usage5.SoftIRQ
	System.CPU.Usage5.SoftIRQ(*)
	System.CPU.Usage15.SoftIRQ
	System.CPU.Usage15.SoftIRQ(*)
	System.CPU.Usage.Steal
	System.CPU.Usage.Steal(*)
	System.CPU.Usage5.Steal
	System.CPU.Usage5.Steal(*)
	System.CPU.Usage15.Steal
	System.CPU.Usage15.Steal(*)
	System.CPU.Usage.System
	System.CPU.Usage.System(*)
	System.CPU.Usage5.System
	System.CPU.Usage5.System(*)
	System.CPU.Usage15.System
	System.CPU.Usage15.System(*)
	System.CPU.Usage.User
	System.CPU.Usage.User(*)
	System.CPU.Usage5.User
	System.CPU.Usage5.User(*)
	System.CPU.Usage15.User
	System.CPU.Usage15.User(*)
	System.CPU.VendorId
	System.CurrentTime
	System.CurrentTime.ISO8601.Local
	System.CurrentTime.ISO8601.UTC
	System.HandleCount
	System.Hostname
	System.IO.BytesReadRate
	System.IO.BytesReadRate(*)
	System.IO.BytesWriteRate
	System.IO.BytesWriteRate(*)
	System.IO.DiskQueue
	System.IO.DiskQueue(*)
	System.IO.DiskTime
	System.IO.DiskTime(*)
	System.IO.ReadRate
	System.IO.ReadRate(*)
	System.IO.TransferRate
	System.IO.TransferRate(*)
	System.IO.OpenFiles
	System.IO.WaitTime
	System.IO.WaitTime(*)
	System.IO.WriteRate
	System.IO.WriteRate(*)
	System.IsRestartPending
	System.IsVirtual
	System.KStat(*)
	System.Memory.Physical.Available
	System.Memory.Physical.AvailablePerc
	System.Memory.Physical.Buffers
	System.Memory.Physical.BuffersPerc
	System.Memory.Physical.Cached
	System.Memory.Physical.CachedPerc
	System.Memory.Physical.Free
	System.Memory.Physical.FreePerc
	System.Memory.Physical.Total
	System.Memory.Physical.Used
	System.Memory.Physical.UsedPerc
	System.Memory.Swap.Free
	System.Memory.Swap.FreePerc
	System.Memory.Swap.Total
	System.Memory.Swap.Used
	System.Memory.Swap.UsedPerc
	System.Memory.Virtual.Active
	System.Memory.Virtual.ActivePerc
	System.Memory.Virtual.Free
	System.Memory.Virtual.FreePerc
	System.Memory.Virtual.Total
	System.Memory.Virtual.Used
	System.Memory.Virtual.UsedPerc
	System.MsgQueue.Bytes(*)
	System.MsgQueue.BytesMax(*)
	System.MsgQueue.ChangeTime(*)
	System.MsgQueue.Messages(*)
	System.MsgQueue.RecvTime(*)
	System.MsgQueue.SendTime(*)
	System.OS.Build
	System.OS.LicenseKey
	System.OS.ProductId
	System.OS.ProductName
	System.OS.ProductType
	System.OS.ServicePack
	System.OS.Version
	System.PlatformName
	System.ProcessCount
	System.ServiceState(*)
	System.ThreadCount
	System.TimeZone
	System.TimeZoneOffset
	System.Uname
	System.Uptime
	X509.Certificate.ExpirationDate
	X509.Certificate.ExpirationTime
	X509.Certificate.ExpiresIn
	X509.Certificate.Issuer
	X509.Certificate.Subject
	X509.Certificate.TemplateID

	List metrics
	DRBD.DeviceList
	FileSystem.MountPoints
	Hardware.Batteries
	Hardware.MemoryDevices
	Hardware.Processors
	Hardware.StorageDevices
	LVM.LogicalVolumes
	LVM.LogicalVolumes(*)
	LVM.PhysicalVolumes
	LVM.PhysicalVolumes(*)
	LVM.VolumeGroups
	Net.ArpCache
	Net.InterfaceList
	Net.InterfaceNames
	Net.IP.RoutingTable
	System.ActiveUserSessions
	System.Desktops(*)
	System.IO.Devices
	System.ProcessList
	System.Services
	System.WindowStations

	Table metrics
	FileSystem.Volumes
	Hardware.Batteries
	Hardware.MemoryDevices
	Hardware.NetworkAdapters
	Hardware.Processors
	Hardware.StorageDevices
	Net.Wireguard.Interfaces
	Net.Wireguard.Peers
	System.ActiveUserSessions
	System.InstalledProducts
	System.OpenFiles
	System.Processes
	System.Services

	Glossary
	Index

